Sampling Latent States for High-Dimensional Non-Linear State Space Models with the Embedded HMM Method

Alexander Shestopaloff, Radford M. Neal

Research output: Contribution to journalArticlepeer-review

Abstract

We propose a new scheme for selecting pool states for the embedded Hidden Markov Model (HMM) Markov Chain Monte Carlo (MCMC) method. This new scheme allows the embedded HMM method to be used for efficient sampling in state space models where the state can be high-dimensional. Previously, embedded HMM methods were only applicable to low-dimensional state-space models. We demonstrate that using our proposed pool state selection scheme, an embedded HMM sampler can have similar performance to a well-tuned sampler that uses a combination of Particle Gibbs with Backward Sampling (PGBS) and Metropolis updates. The scaling to higher dimensions is made possible by selecting pool states locally near the current value of the state sequence. The proposed pool state selection scheme also allows each iteration of the embedded HMM sampler to take time linear in the number of the pool states, as opposed to quadratic as in the original embedded HMM sampler.
Original languageEnglish
Pages (from-to)797-822
Number of pages26
JournalBayesian analysis
Volume13
Issue number3
Early online date21 Oct 2017
Publication statusPublished - Sept 2018

Fingerprint

Dive into the research topics of 'Sampling Latent States for High-Dimensional Non-Linear State Space Models with the Embedded HMM Method'. Together they form a unique fingerprint.

Cite this