Abstract
Sensor data acquired from multiple sensors simultaneously is featuring increasingly in our evermore pervasive world. Buildings can be made smarter and more efficient, spaces more responsive to users. A fundamental building block towards smart spaces is the ability to understand who is present in a certain area. A ubiquitous way of detecting this is to exploit the unique vocal features as people interact with one another. As an example, consider audio features sampled during a meeting, yielding a noisy set of possible voiceprints. With a number of meetings and knowledge of participation (e.g. through a calendar or MAC address), can we learn to associate a specific identity with a particular voiceprint? Obviously enrolling users into a biometric database is time-consuming and not robust to vocal deviations over time. To address this problem, the standard approach is to perform a clustering step (e.g. of audio data) followed by a data association step, when identity-rich sensor data is available. In this paper we show that this approach is not robust to noise in either type of sensor stream; to tackle this issue we propose a novel algorithm that jointly optimises the clustering and association process yielding up to three times higher identification precision than approaches that execute these steps sequentially. We demonstrate the performance benefits of our approach in two case studies, one with acoustic and MAC datasets that we collected from meetings in a non-residential building, and another from an online dataset from recorded radio interviews.
Original language | English |
---|---|
Title of host publication | Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks |
Place of Publication | New York, NY, USA |
Publisher | ACM Association for Computing Machinery |
Pages | 67–78 |
Number of pages | 12 |
ISBN (Print) | 9781450348904 |
DOIs | |
Publication status | Published - 18 Apr 2017 |
Event | 16th ACM/IEEE International Conference on Information Processing in Sensor Networks - Pittsburgh, United States Duration: 18 Apr 2017 → 21 Aug 2017 https://ipsn.acm.org/2017/ |
Publication series
Name | IPSN '17 |
---|---|
Publisher | Association for Computing Machinery |
Conference
Conference | 16th ACM/IEEE International Conference on Information Processing in Sensor Networks |
---|---|
Abbreviated title | IPSN 2017 |
Country/Territory | United States |
City | Pittsburgh |
Period | 18/04/17 → 21/08/17 |
Internet address |
Keywords / Materials (for Non-textual outputs)
- data-association
- speaker identification