TY - JOUR
T1 - Search for dark matter produced in association with bottom or top quarks in $\sqrt{s}=13$ TeV pp collisions with the ATLAS detector
AU - Clark, Philip James
AU - Farrington, Sinead
AU - Faucci Giannelli, Michele
AU - Gao, Yanyan
AU - Hasib, Ahmed
AU - Leonidopoulos, Christos
AU - Martin, Victoria Jane
AU - Mijović, Liza
AU - Mills, Corrinne
AU - Wynne, Benjamin
AU - Collaboration, Atlas
PY - 2018/1/11
Y1 - 2018/1/11
N2 - A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1 $fb^{-1}$ of proton-proton collision data recorded by the ATLAS experiment at $\sqrt{s}$ = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are interpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour-neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross-section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour-charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements.
AB - A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1 $fb^{-1}$ of proton-proton collision data recorded by the ATLAS experiment at $\sqrt{s}$ = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are interpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour-neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross-section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour-charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements.
U2 - 10.1140/epjc/s10052-017-5486-1
DO - 10.1140/epjc/s10052-017-5486-1
M3 - Article
SN - 1434-6044
VL - C78
SP - 18
JO - The European Physical Journal C (EPJ C)
JF - The European Physical Journal C (EPJ C)
IS - 1
M1 - Aaboud:2017rzf
ER -