Projects per year
Abstract
A search for neutral long-lived particles (LLPs) decaying in the ATLAS hadronic
calorimeter using 140 fb−1 of proton-proton collisions at √s = 13 TeV delivered by the LHC is presented. The analysis is composed of three channels. The first targets pair-produced LLPs, where at least one LLP is produced with sufficiently low boost that its decay products can be resolved as separate jets. The second and third channels target LLPs respectively produced in association with a W or Z boson that decays leptonically. In each channel, different search regions target different kinematic regimes, to cover a broad range of LLP mass hypotheses and models. No excesses of events relative to the background predictions are observed. Higgs boson branching fractions to pairs of hadronically decaying neutral LLPs larger than 1% are
excluded at 95% confidence level for proper decay lengths in the range of 30 cm to 4.5 m depending on the LLP mass, a factor of three improvement on previous searches in the hadronic calorimeter. The production of long-lived dark photons in association with a Z boson with cross-sections above 0.1 pb is excluded for dark photon mean proper decay lengths in the range of 20 cm to 50 m, improving previous ATLAS results by an order of magnitude. Finally, long-lived photo-phobic axion-like particle models are probed for the first time by ATLAS, with production cross-sections above 0.1 pb excluded in the 0.1 mm to 10 m range.
calorimeter using 140 fb−1 of proton-proton collisions at √s = 13 TeV delivered by the LHC is presented. The analysis is composed of three channels. The first targets pair-produced LLPs, where at least one LLP is produced with sufficiently low boost that its decay products can be resolved as separate jets. The second and third channels target LLPs respectively produced in association with a W or Z boson that decays leptonically. In each channel, different search regions target different kinematic regimes, to cover a broad range of LLP mass hypotheses and models. No excesses of events relative to the background predictions are observed. Higgs boson branching fractions to pairs of hadronically decaying neutral LLPs larger than 1% are
excluded at 95% confidence level for proper decay lengths in the range of 30 cm to 4.5 m depending on the LLP mass, a factor of three improvement on previous searches in the hadronic calorimeter. The production of long-lived dark photons in association with a Z boson with cross-sections above 0.1 pb is excluded for dark photon mean proper decay lengths in the range of 20 cm to 50 m, improving previous ATLAS results by an order of magnitude. Finally, long-lived photo-phobic axion-like particle models are probed for the first time by ATLAS, with production cross-sections above 0.1 pb excluded in the 0.1 mm to 10 m range.
Original language | English |
---|---|
Article number | 36 |
Pages (from-to) | 1-51 |
Number of pages | 51 |
Journal | Journal of High Energy Physics |
Volume | 2024 |
Issue number | 11 |
DOIs | |
Publication status | Published - 6 Nov 2024 |
Keywords / Materials (for Non-textual outputs)
- Beyond Standard Model
- Exotics
- Hadron-Hadron Scattering
- Proton-Proton Scattering
Fingerprint
Dive into the research topics of 'Search for neutral long-lived particles that decay into displaced jets in the ATLAS calorimeter in association with leptons or jets using pp collisions at √s = 13 TeV'. Together they form a unique fingerprint.-
Upgrade of the ATLAS detector at the LHC (2023-26)
Clark, P. (Principal Investigator)
Science and Technology Facilities Council
1/04/23 → 31/03/27
Project: Research
-
Experimental Particle Physics at the University of Edinburgh
Leonidopoulos, C. (Principal Investigator)
Science and Technology Facilities Council
1/04/23 → 31/03/26
Project: Research
-
Experimental Particle Physics at the University of Edinburgh
Leonidopoulos, C. (Principal Investigator)
Science and Technology Facilities Council
1/10/22 → 31/03/26
Project: Research