TY - JOUR
T1 - Search for pair production of heavy vector-like quarks decaying into hadronic final states in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector
AU - Clark, Philip James
AU - Farrington, Sinead
AU - Faucci Giannelli, Michele
AU - Gao, Yanyan
AU - Hasib, Ahmed
AU - Leonidopoulos, Christos
AU - Martin, Victoria Jane
AU - Mijovic, Liza
AU - Wynne, Benjamin
AU - Collaboration, Atlas
PY - 2018/11/9
Y1 - 2018/11/9
N2 - A search is presented for the pair production of heavy vector-like quarks, $T\bar T$ or $B\bar B$, that decay into final states with jets and no reconstructed leptons. Jets in the final state are classified using a deep neural network as arising from hadronically decaying $W/Z$ bosons, Higgs bosons, top quarks, or background. The analysis uses data from the ATLAS experiment corresponding to 36.1 fb$^{-1}$ of proton-proton collisions with a center-of-mass energy of $\sqrt{s} = 13$ TeV delivered by the Large Hadron Collider in 2015 and 2016. No significant deviation from the Standard Model expectation is observed. Results are interpreted assuming the vector-like quarks decay into a Standard Model boson and a third-generation-quark, $T\rightarrow Wb,Ht,Zt$ or $B\rightarrow Wt,Hb,Zb$, for a variety of branching ratios. At 95% confidence level, the observed (expected) lower limit on the vector-like $B$-quark mass for a weak-isospin doublet ($B, Y$) is 950 (890) GeV, and the lower limits on the masses for the pure decays $B\rightarrow Hb$ and $T\rightarrow Ht$, where these results are strongest, are 1010 (970) GeV and 1010 (1010) GeV, respectively.
AB - A search is presented for the pair production of heavy vector-like quarks, $T\bar T$ or $B\bar B$, that decay into final states with jets and no reconstructed leptons. Jets in the final state are classified using a deep neural network as arising from hadronically decaying $W/Z$ bosons, Higgs bosons, top quarks, or background. The analysis uses data from the ATLAS experiment corresponding to 36.1 fb$^{-1}$ of proton-proton collisions with a center-of-mass energy of $\sqrt{s} = 13$ TeV delivered by the Large Hadron Collider in 2015 and 2016. No significant deviation from the Standard Model expectation is observed. Results are interpreted assuming the vector-like quarks decay into a Standard Model boson and a third-generation-quark, $T\rightarrow Wb,Ht,Zt$ or $B\rightarrow Wt,Hb,Zb$, for a variety of branching ratios. At 95% confidence level, the observed (expected) lower limit on the vector-like $B$-quark mass for a weak-isospin doublet ($B, Y$) is 950 (890) GeV, and the lower limits on the masses for the pure decays $B\rightarrow Hb$ and $T\rightarrow Ht$, where these results are strongest, are 1010 (970) GeV and 1010 (1010) GeV, respectively.
U2 - 10.1103/PhysRevD.98.092005
DO - 10.1103/PhysRevD.98.092005
M3 - Article
SN - 0556-2821
VL - D98
JO - Physical Review D, particles, fields, gravitation, and cosmology
JF - Physical Review D, particles, fields, gravitation, and cosmology
IS - 9
M1 - 092005
ER -