Selecting the Optimal Movement Subset with Different Pattern Recognition Based EMG Control Algorithms

Ali H. Al-Timemy, Rami N. Khushaba, Javier Escudero

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Pattern Recognition (PR)-based EMG controllers of multi-functional upper-limb prostheses have been recently deployed on commercial state-of-the-art prostheses, offering intuitive control with the ability to control large number of movements with fast reaction time. Current challenges with such PR systems include the lack of training and deployment protocols that can help optimize the system’s performance based on amputees’ needs. Selecting the best subset of movements that each individual amputee can perform will help to exclude movements that have poor performance so that a subject-specific training can be achieved. In this paper, we propose to select the best set of movements that each amputee can perform as well as identifying the movements for which the PR system would have the worst performance and, therefore, would require further training. Unlike previous studies in this direction, different feature extraction and classification methods were utilized to examine if the choice of features/classifiers could affect the best movements subset selection. We performed our experiments on EMG signals collected from four transradial amputees with an accuracy >97.5% on average across all subjects for the selection of best subset of movements.
Original languageEnglish
Title of host publicationProceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Pages315-318
Number of pages4
ISBN (Electronic)978-1-4577-0220-4/16
Publication statusPublished - 17 Aug 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society - Florida, Orlando, United States
Duration: 16 Aug 201620 Aug 2016
https://embc.embs.org/2016/

Conference

Conference38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Abbreviated titleEMBC 2016
Country/TerritoryUnited States
CityOrlando
Period16/08/1620/08/16
Internet address

Fingerprint

Dive into the research topics of 'Selecting the Optimal Movement Subset with Different Pattern Recognition Based EMG Control Algorithms'. Together they form a unique fingerprint.

Cite this