Selecting the optimal system: automated design of application-specific systems-on-chip

Oscar Almer, Miles Gould, Nigel Topham, Bjoern Franke

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Specialising Systems-on-Chip (SOCs) for a particular application is an effective way of increasing the performance achievable for a given level of energy consumption. In fact, silicon manufacture costs are low enough that small, custom, entirely digital designs, up to and including multi-core microprocessor designs, can be manufactured cheaply in short manufacturing runs. Non-recurring engineering (Nre) costs are still prohibitive due to the high level of experience required from the design engineer and the vast size of the design space. This is even true when only pre-verified Commercial Off-the-Shelf (Cots) Intellectual Property (ip) blocks are used in the SoC design. In this paper we present a novel machine-learning based method of generating an application-specific SoC design and configuration. This approach is fully automated and can generate near-optimal application-specific SoC designs within hours rather than weeks and, hence, reduce both Nre costs and time-to-market significantly. Our methodology profiles key application characteristics using simulation of a small number of test systems and machine-learning based prediction to find likely optimal system designs for a given target application. We demonstrate the effectiveness of our automated design methodology using 82 workload applications, generate SoC designs with up to 10 cores and 8 memory banks, and show that our classifier averages up to 92% of the optimal design performance across our applications.
Original languageEnglish
Title of host publicationProceedings of the 4th International Workshop on Network on Chip Architectures - NoCArc 2011
PublisherACM
Pages43-50
ISBN (Print)978-1-4503-0947-9
DOIs
Publication statusPublished - 2011

Fingerprint Dive into the research topics of 'Selecting the optimal system: automated design of application-specific systems-on-chip'. Together they form a unique fingerprint.

Cite this