TY - JOUR
T1 - Semi-supervised domain adaptation for holistic counting under label gap
AU - Litrico, Mattia
AU - Battiato, Sebastiano
AU - Tsaftaris, Sotirios A.
AU - Giuffrida, Mario Valerio
N1 - Funding Information:
Funding: This project was partially funded by the Edinburgh Napier University internally funded project “Li.Ne.Co.” and by the University of Catania internally funded project “D4Health”.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/9/29
Y1 - 2021/9/29
N2 - This paper proposes a novel approach for semi-supervised domain adaptation for holistic regression tasks, where a DNN predicts a continuous value y ∈ R given an input image x. The current literature generally lacks specific domain adaptation approaches for this task, as most of them mostly focus on classification. In the context of holistic regression, most of the real-world datasets not only exhibit a covariate (or domain) shift, but also a label gap—the target dataset may contain labels not included in the source dataset (and vice versa). We propose an approach tackling both covariate and label gap in a unified training framework. Specifically, a Generative Adversarial Network (GAN) is used to reduce covariate shift, and label gap is mitigated via label normalisation. To avoid overfitting, we propose a stopping criterion that simultaneously takes advantage of the Maximum Mean Discrepancy and the GAN Global Optimality condition. To restore the original label range—that was previously normalised—a handful of annotated images from the target domain are used. Our experimental results, run on 3 different datasets, demonstrate that our approach drastically outperforms the state-of-the-art across the board. Specifically, for the cell counting problem, the mean squared error (MSE) is reduced from 759 to 5.62; in the case of the pedestrian dataset, our approach lowered the MSE from 131 to 1.47. For the last experimental setup, we borrowed a task from plant biology, i.e., counting the number of leaves in a plant, and we ran two series of experiments, showing the MSE is reduced from 2.36 to 0.88 (intra-species), and from 1.48 to 0.6 (inter-species).
AB - This paper proposes a novel approach for semi-supervised domain adaptation for holistic regression tasks, where a DNN predicts a continuous value y ∈ R given an input image x. The current literature generally lacks specific domain adaptation approaches for this task, as most of them mostly focus on classification. In the context of holistic regression, most of the real-world datasets not only exhibit a covariate (or domain) shift, but also a label gap—the target dataset may contain labels not included in the source dataset (and vice versa). We propose an approach tackling both covariate and label gap in a unified training framework. Specifically, a Generative Adversarial Network (GAN) is used to reduce covariate shift, and label gap is mitigated via label normalisation. To avoid overfitting, we propose a stopping criterion that simultaneously takes advantage of the Maximum Mean Discrepancy and the GAN Global Optimality condition. To restore the original label range—that was previously normalised—a handful of annotated images from the target domain are used. Our experimental results, run on 3 different datasets, demonstrate that our approach drastically outperforms the state-of-the-art across the board. Specifically, for the cell counting problem, the mean squared error (MSE) is reduced from 759 to 5.62; in the case of the pedestrian dataset, our approach lowered the MSE from 131 to 1.47. For the last experimental setup, we borrowed a task from plant biology, i.e., counting the number of leaves in a plant, and we ran two series of experiments, showing the MSE is reduced from 2.36 to 0.88 (intra-species), and from 1.48 to 0.6 (inter-species).
KW - Domain adaptation
KW - Holistic counting
KW - Label gap
KW - Regression
UR - http://www.scopus.com/inward/record.url?scp=85116961528&partnerID=8YFLogxK
U2 - 10.3390/jimaging7100198
DO - 10.3390/jimaging7100198
M3 - Article
AN - SCOPUS:85116961528
SN - 2313-433X
VL - 7
JO - Journal of Imaging
JF - Journal of Imaging
IS - 10
M1 - 198
ER -