Projects per year
Abstract / Description of output
In this paper, we present new algorithms and analysis for the linear inverse sensor placement and scheduling problems over multiple time instances with power and communications constraints. The proposed algorithms, which deal directly with minimizing the mean squared error (MSE), are based on the convex relaxation approach to address the binary optimization scheduling problems that are formulated in sensor network scenarios. We propose to balance the energy and communications demands of operating a network of sensors over time while we still guarantee a minimum level of estimation accuracy. We measure this accuracy by the MSE for which we provide average case and lower bounds analyses that hold in general, irrespective of the scheduling algorithm used. We show experimentally how the proposed algorithms perform against state-of-the-art methods previously described in the literature.
Original language | English |
---|---|
Pages (from-to) | 528 - 539 |
Number of pages | 12 |
Journal | IEEE Transactions on Signal Processing |
Volume | 66 |
Issue number | 2 |
Early online date | 13 Nov 2017 |
DOIs | |
Publication status | Published - 15 Jan 2018 |
Fingerprint
Dive into the research topics of 'Sensor scheduling with time, energy and communication constraints'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Signal Processing in the Networked Battlespace
Mulgrew, B., Davies, M., Hopgood, J. & Thompson, J.
1/04/13 → 30/06/18
Project: Research
Profiles
-
John Thompson
- School of Engineering - Personal Chair in Signal Processing & Communications
Person: Academic: Research Active