Sequestering HMGB1 via DNA-Conjugated Beads Ameliorates Murine Colitis

Zhongliang Ju, Sangeeta S. Chavan, Daniel J. Antoine, Meghan Dancho, Tea Tsaava, Jianhua Li, Ben Lu, Yaakov A. Levine, Andrew Stiegler, Yehuda Tamari, Yousef Al-Abed, Jesse Roth, Kevin J. Tracey, Huan Yang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Inflammatory bowel disease (IBD) is chronic inflammation of the gastrointestinal tract that affects millions of people worldwide. Although the etiology of IBD is not clear, it is known that products from stressed cells and enteric microbes promote intestinal inflammation. High mobility group box 1 (HMGB1), originally identified as a nuclear DNA binding protein, is a cytokine-like protein mediator implicated in infection, sterile injury, autoimmune disease, and IBD. Elevated levels of HMGB1 have been detected in inflamed human intestinal tissues and in feces of IBD patients and mouse models of colitis. Neutralizing HMGB1 activity by administration of anti-HMGB1 antibodies or HMGB1-specific antagonist improves clinical outcomes in animal models of colitis. Since HMGB1 binds to DNA with high affinity, here we developed a novel strategy to sequester HMGB1 using DNA immobilized on sepharose beads. Screening of DNA-bead constructs revealed that B2 beads, one linear form of DNA conjugated beads, bind HMGB1 with high affinity, capture HMGB1 ex vivo from endotoxin-stimulated RAW 264.7 cell supernatant and from feces of mice with colitis. Oral administration of B2 DNA beads significantly improved body weight, reduced colon injury, and suppressed colonic and circulating cytokine levels in mice with spontaneous colitis (IL-10 knockout) and with dextran sulfate sodium-induced colitis. Thus, DNA beads reduce inflammation by sequestering HMGB1 and may have therapeutic potential for the treatment of IBD.

Original languageEnglish
Article number103992
Number of pages15
JournalPLoS ONE
Volume9
Issue number8
DOIs
Publication statusPublished - 15 Aug 2014

Keywords

  • INFLAMMATORY-BOWEL-DISEASE
  • MOBILITY GROUP BOX-1
  • ULCERATIVE-COLITIS
  • ACETAMINOPHEN HEPATOTOXICITY
  • HEMORRHAGIC-SHOCK
  • CYTOKINE ACTIVITY
  • PROTEIN HMGB1
  • MICE
  • APOPTOSIS
  • RELEASE

Fingerprint

Dive into the research topics of 'Sequestering HMGB1 via DNA-Conjugated Beads Ameliorates Murine Colitis'. Together they form a unique fingerprint.

Cite this