Shear melting and high temperature embrittlement: theory and application to machining titanium

Con Healy*, Sascha Koch, Carsten Siemers, Debashis Mukherji, Graeme J. Ackland

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding is supplanted by amorphization in a highly localized nanoscale band, which allows massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are, lack of dislocation slip systems, low thermal conduction and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting point elements: specifically we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.
Original languageEnglish
Article number165501
Number of pages5
JournalPhysical Review Letters
Issue number16
Publication statusPublished - 30 Mar 2015

Keywords / Materials (for Non-textual outputs)



Dive into the research topics of 'Shear melting and high temperature embrittlement: theory and application to machining titanium'. Together they form a unique fingerprint.
  • MRS

    Graeme Ackland (Invited speaker)

    31 Mar 2016

    Activity: Participating in or organising an event typesParticipation in conference

Cite this