TY - JOUR
T1 - Significant loss of mitochondrial diversity within the last century due to extinction of peripheral populations in eastern gorillas
AU - Van Der Valk, Tom
AU - Sandoval-Castellanos, Edson
AU - Caillaud, Damien
AU - Ngobobo, Urbain
AU - Binyinyi, Escobar
AU - Nishuli, Radar
AU - Stoinski, Tara
AU - Gilissen, Emmanuel
AU - Sonet, Gontran
AU - Semal, Patrick
AU - Kalthoff, Daniela C.
AU - Dalén, Love
AU - Guschanski, Katerina
N1 - Funding Information:
We would like to thank the Dian Fossey Gorilla Fund International and Institut Congolais pour la Conservation de la Nature for permission and logistical support of research in the DRC. We are grateful to the Fossey Fund trackers and the ICCN park rangers who helped us collect samples in Nkuba and at Kahuzi-Biega NP. To Isabel Ordaz Németh and Zoltan T. Nagy for their support during the study of natural history collections; Nadin Rohland for help with laboratory protocols; Christian Roos from the Gene Bank of Primates for providing western lowland gorilla DNA; Pauline Baas for providing genotyping data for fecal samples. Sequencing was performed by the SNP&SEQ Technology Platform in Uppsala and Stockholm. The facility is part of the National Genomics Infrastructure (NGI) Sweden and Science for Life Laboratory. The SNP&SEQ Platform is also supported by the Swedish Research Council and the Knut and Alice Wallenberg Foundation. The authors further acknowledge support from the Uppsala Multidisciplinary Center for Advanced Computational Science for assistance with massively parallel sequencing and access to the UPPMAX computational infrastructure. This research was supported by the following grants: Human Frontier Science Program Postdoctoral Fellowship to KG (LT000800/2011-L), the Jan Löfqvist and the Nilsson-Ehle Endowments of the Royal Physiographic Society of Lund to KG, FORMAS (project 2015–676) to LD, the Turner Foundation, the Daniel K. Thorne Foundation and the Margot Marsh Biodiversity Foundation to the Dian Fossey Gorilla Fund.
Publisher Copyright:
© 2018 The Author(s).
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/4/25
Y1 - 2018/4/25
N2 - Species and populations are disappearing at an alarming rate as a direct result of human activities. Loss of genetic diversity associated with population decline directly impacts species' long-term survival. Therefore, preserving genetic diversity is of considerable conservation importance. However, to assist in conservation efforts, it is important to understand how genetic diversity is spatially distributed and how it changes due to anthropogenic pressures. In this study, we use historical museum and modern faecal samples of two critically endangered eastern gorilla taxa, Grauer's (Gorilla beringei graueri) and mountain gorillas (Gorilla beringei beringei), to directly infer temporal changes in genetic diversity within the last century. Using over 100 complete mitochondrial genomes, we observe a significant decline in haplotype and nucleotide diversity in Grauer's gorillas. By including historical samples from now extinct populations we show that this decline can be attributed to the loss of peripheral populations rather than a decrease in genetic diversity within the core range of the species. By directly quantifying genetic changes in the recent past, our study shows that human activities have severely impacted eastern gorilla genetic diversity within only four to five generations. This rapid loss calls for dedicated conservation actions, which should include preservation of the remaining peripheral populations.
AB - Species and populations are disappearing at an alarming rate as a direct result of human activities. Loss of genetic diversity associated with population decline directly impacts species' long-term survival. Therefore, preserving genetic diversity is of considerable conservation importance. However, to assist in conservation efforts, it is important to understand how genetic diversity is spatially distributed and how it changes due to anthropogenic pressures. In this study, we use historical museum and modern faecal samples of two critically endangered eastern gorilla taxa, Grauer's (Gorilla beringei graueri) and mountain gorillas (Gorilla beringei beringei), to directly infer temporal changes in genetic diversity within the last century. Using over 100 complete mitochondrial genomes, we observe a significant decline in haplotype and nucleotide diversity in Grauer's gorillas. By including historical samples from now extinct populations we show that this decline can be attributed to the loss of peripheral populations rather than a decrease in genetic diversity within the core range of the species. By directly quantifying genetic changes in the recent past, our study shows that human activities have severely impacted eastern gorilla genetic diversity within only four to five generations. This rapid loss calls for dedicated conservation actions, which should include preservation of the remaining peripheral populations.
U2 - 10.1038/s41598-018-24497-7
DO - 10.1038/s41598-018-24497-7
M3 - Article
C2 - 29695730
AN - SCOPUS:85046069813
SN - 2045-2322
VL - 8
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 6551
ER -