Simulation of sloshing motions in fixed and vertically excited containers using a 2-D inviscid sigma-transformed finite difference solver

JB Frandsen*, AGL Borthwick

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Nonlinear effects of standing wave motions in fixed and vertically excited tanks are numerically investigated. The present fully nonlinear model simulates two-dimensional waves in stable and unstable regions of the free-surface flow. Numerical solutions of the governing nonlinear potential flow equations are obtained using a finite-difference time-stepping scheme on adaptively mapped grids. A a-transformation in the vertical direction that stretches directly between the free surface and bed boundary is applied to map the moving free-surface physical domain onto a fixed computational domain. A horizontal linear mapping is also applied, so that the resulting computational domain is rectangular, and consists of unit square cells.

Predictions of small-amplitude free-surface motions in fixed and vertically excited tanks compare well with second order small perturbation theory. For stable steep waves in the vertically excited tank, the free surface exhibits nonlinear behaviour. Parametric resonance is evident in the instability zones, as the amplitudes grow infinitely large, even for small forcing amplitudes. For steep initial amplitudes the predictions differ considerably from the small perturbation theory solution, demonstrating the importance of nonlinear effects.

The present numerical model provides a simple way of simulating steep nonbreaking waves. It is computationally quick and accurate. The a-transformation removes the need for free-surface smoothing for the cases considered herein. (C) 2003 Published by Elsevier Ltd.

Original languageEnglish
Pages (from-to)197-214
Number of pages18
JournalJournal of fluids and structures
Volume18
Issue number2
DOIs
Publication statusPublished - Sep 2003
Event5th International Symposium on Fluid-Structure Interaction, Aeroelasticity, Flow-Induced Vibration and Noise - NEW ORLEANS, United Kingdom
Duration: 1 Nov 2002 → …

Keywords

  • RESONANT SURFACE-WAVES
  • STANDING WAVES
  • COORDINATE SYSTEM
  • ELEMENT METHOD
  • TANK
  • DEPTH
  • FLUID
  • AMPLITUDE
  • WATER

Fingerprint

Dive into the research topics of 'Simulation of sloshing motions in fixed and vertically excited containers using a 2-D inviscid sigma-transformed finite difference solver'. Together they form a unique fingerprint.

Cite this