TY - JOUR
T1 - Single-channel currents from recombinant NMDA NR1a/NR2D receptors expressed in Xenopus oocytes
AU - Wyllie, D J
AU - Béhé, P
AU - Nassar, M
AU - Schoepfer, R
AU - Colquhoun, D
PY - 1996
Y1 - 1996
N2 - We have investigated the single-channel and whole-cell behaviour of recombinant N-methyl-D-aspartate (NMDA) receptors formed from NR1a and NR2D receptor subunits expressed in Xenopus oocytes. The EC50 for apparent steady-state activation of NR1a/NR2D receptors by glutamate was 450 nM, while extracellular MG2+ produced a voltage-dependent block of glutamate responses with an IC50 of 440 microM at -70 mV. At negative holding potentials glutamate-activated NR1a/NR2D single-channel currents, in 0.85 mM external Ca2+, had slope conductances of 35 pS for the main level, and 17 pS for the sublevel; direct transitions occurred between these two conductance levels. On average 35 pS events had mean open times of 1.01 +/- 0.04 ms, whereas the mean open times of 17 pS events were consistently longer (1.28 +/- 0.06 ms). In 5 mM external Ca2+ the larger conductance level was reduced to 20 pS whereas in Ca(2+)-free solutions it was increased to 50 pS. The frequency of transitions between the main and subconductance levels showed temporal asymmetry: 35-17 pS transitions were more frequent (61%) than 17-35 pS transitions. This asymmetry was not affected by alterations in the external Ca2+ concentration (up to 5 mM). In conclusion, the NR1a/NR2D channel is, like NR1a/NR2C, a 'low conductance' NMDA channel, but it can be distinguished from NR1a/NR2C channels on the basis of transition asymmetry and differences in the open times of its main and sub-conductance levels.
AB - We have investigated the single-channel and whole-cell behaviour of recombinant N-methyl-D-aspartate (NMDA) receptors formed from NR1a and NR2D receptor subunits expressed in Xenopus oocytes. The EC50 for apparent steady-state activation of NR1a/NR2D receptors by glutamate was 450 nM, while extracellular MG2+ produced a voltage-dependent block of glutamate responses with an IC50 of 440 microM at -70 mV. At negative holding potentials glutamate-activated NR1a/NR2D single-channel currents, in 0.85 mM external Ca2+, had slope conductances of 35 pS for the main level, and 17 pS for the sublevel; direct transitions occurred between these two conductance levels. On average 35 pS events had mean open times of 1.01 +/- 0.04 ms, whereas the mean open times of 17 pS events were consistently longer (1.28 +/- 0.06 ms). In 5 mM external Ca2+ the larger conductance level was reduced to 20 pS whereas in Ca(2+)-free solutions it was increased to 50 pS. The frequency of transitions between the main and subconductance levels showed temporal asymmetry: 35-17 pS transitions were more frequent (61%) than 17-35 pS transitions. This asymmetry was not affected by alterations in the external Ca2+ concentration (up to 5 mM). In conclusion, the NR1a/NR2D channel is, like NR1a/NR2C, a 'low conductance' NMDA channel, but it can be distinguished from NR1a/NR2C channels on the basis of transition asymmetry and differences in the open times of its main and sub-conductance levels.
U2 - 10.1098/rspb.1996.0159
DO - 10.1098/rspb.1996.0159
M3 - Article
C2 - 8805841
SN - 0962-8452
VL - 263
SP - 1079
EP - 1086
JO - Proceedings of the Royal Society B-Biological Sciences
JF - Proceedings of the Royal Society B-Biological Sciences
IS - 1373
ER -