Abstract / Description of output
Monte Carlo (MC) methods are useful tools for Bayesian inference and stochastic optimization that have been widely applied in signal processing and machine learning. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce a novel parallel interacting MCMC scheme, where the parallel chains share information, thus yielding a faster exploration of the state space. The interaction is carried out generating a dynamic repulsion among the 'smelly' parallel chains that takes into account the entire population of current states. The ergodicity of the scheme and its relationship with other sampling methods are discussed. Numerical results show the advantages of the proposed approach in terms of mean square error, robustness w.r.t. to initial values and parameter choice.
Original language | English |
---|---|
Title of host publication | 2015 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers |
Pages | 4070-4074 |
Number of pages | 5 |
Volume | 2015-August |
ISBN (Electronic) | 9781467369978 |
DOIs | |
Publication status | Published - 1 Jan 2015 |
Event | 40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015 - Brisbane, Australia Duration: 19 Apr 2014 → 24 Apr 2014 |
Conference
Conference | 40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015 |
---|---|
Country/Territory | Australia |
City | Brisbane |
Period | 19/04/14 → 24/04/14 |
Keywords / Materials (for Non-textual outputs)
- Bayesian inference
- Markov Chain Monte Carlo
- parallel and interacting chains