Solving Data Sparsity for Aspect Based Sentiment Analysis Using Cross-Linguality and Multi-Linguality

Md Shad Akhtar, Palaash Sawant, Sukanta Sen, Asif Ekbal, Pushpak Bhattacharyya

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Efficient word representations play an important role in solving various problems related to Natural Language Processing (NLP), data mining, text mining etc. The issue of data sparsity poses a great challenge in creating efficient word representation model for solving the underlying problem. The problem is more intensified in resource-poor scenario due to the absence of sufficient amount of corpus. In this work we propose to minimize the effect of data sparsity by leveraging bilingual word embeddings learned through a parallel corpus. We train and evaluate Long Short Term Memory (LSTM) based architecture for aspect level sentiment classification. The neural network architecture is further assisted by the hand-crafted features for the prediction. We show the efficacy of the proposed model against state-of-the-art methods in two experimental setups i.e. multi-lingual and cross-lingual.
Original languageEnglish
Title of host publicationProceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
Place of PublicationNew Orleans, Louisiana
PublisherAssociation for Computational Linguistics
Pages572-582
Number of pages11
ISBN (Electronic)978-1-948087-27-8
DOIs
Publication statusPublished - 1 Jun 2018
Event16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Hyatt Regency New Orleans Hotel, New Orleans, United States
Duration: 1 Jun 20186 Jun 2018
http://naacl2018.org/

Conference

Conference16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Abbreviated titleNAACL HLT 2018
Country/TerritoryUnited States
CityNew Orleans
Period1/06/186/06/18
Internet address

Fingerprint

Dive into the research topics of 'Solving Data Sparsity for Aspect Based Sentiment Analysis Using Cross-Linguality and Multi-Linguality'. Together they form a unique fingerprint.

Cite this