Projects per year
Abstract
We construct global-in-time singular dynamics for the (renormalized) cubic fourth order nonlinear Schrödinger equation on the circle, having the white noise measure as an invariant measure. For this purpose, we introduce the "random-resonant / nonlinear decomposition", which allows us to single out the singular component of the solution. Unlike the classical McKean, Bourgain, Da Prato-Debussche type argument, this singular component is nonlinear, consisting of arbitrarily high powers of the random initial data. We also employ a random gauge transform, leading to random Fourier restriction norm spaces. For this problem, a contraction argument does not work and we instead establish convergence of smooth approximating solutions by studying the partially iterated Duhamel formulation under the random gauge transform. We reduce the crucial nonlinear estimates to boundedness properties of certain random multilinear functionals of the white noise.
Original language | English |
---|---|
Article number | e48 |
Number of pages | 64 |
Journal | Forum of Mathematics, Sigma |
Volume | 8 |
DOIs | |
Publication status | Published - 18 Nov 2020 |
Fingerprint
Dive into the research topics of 'Solving the 4NLS with white noise initial data'. Together they form a unique fingerprint.Projects
- 1 Finished
-
ProbDynDispEq - Probabilistic and Dynamical Study of Nonlinear Dispersive Equations
1/03/15 → 29/02/20
Project: Research
Profiles
-
Tadahiro Oh
- School of Mathematics - Personal Chair of Dispersive Equations
Person: Academic: Research Active