Sonic horizons and causality in phase transition dynamics

Debasis Sadhukhan, Aritra Sinha, Anna Francuz, Justyna Stefaniak, Marek M. Rams, Jacek Dziarmaga, Wojciech H. Zurek

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

A system gradually driven through a symmetry-breaking phase transition is subject to the Kibble-Zurek mechanism (KZM). As a consequence of the critical slowing down, its state cannot follow local equilibrium, and its evolution becomes nonadiabatic near the critical point. In the simplest approximation, that stage can be regarded as an “impulse” where the state of the system remains unchanged. It leads to the correct KZM scaling laws. However, such a “freeze-out” might suggest that the coherence length of the nascent order parameter remains unchanged as the critical region is traversed. By contrast, the original causality-based discussion emphasized the role of the sonic horizon: Domains of the broken symmetry phase can expand with a velocity limited by the speed of the relevant sound. This effect was demonstrated in the quantum Ising chain where the dynamical exponent z=1 and quasiparticles excited by the transition have a fixed speed of sound. To elucidate the role of the sonic horizon, in this paper we study two systems with z>1 where the speed of sound is no longer fixed, and the fastest excited quasiparticles set the size of the sonic horizon. Their effective speed decays with increasing transition time. In the extreme case, the dynamical exponent z can diverge such as in the Griffiths region of the random Ising chain where the localization of excited quasiparticles freezes the growth of the correlation range when the critical region is traversed. Of particular interest is an example with z<1, the long-range extended Ising chain, where there is no upper limit to the velocity of excited quasiparticles with small momenta. Initially, the power-law tail of the correlation function grows adiabatically, but in the nonadiabatic stage it lags behind the adiabatic evolution.
Original languageEnglish
Article number144429
Number of pages16
JournalPhysical Review B
Volume101
DOIs
Publication statusPublished - 21 Apr 2020

Fingerprint

Dive into the research topics of 'Sonic horizons and causality in phase transition dynamics'. Together they form a unique fingerprint.

Cite this