SOPHIA: Soft Orthotic Physiotherapy Hand Interactive Aid

Alistair C. McConnell, Marta Vallejo, Renan Cipriano Moioli, Fabricio L. Brasil, Nicola Secciani, Markus P. Nemitz, Cecile P. Riquart, David W. Corne, Patricia A. Vargas, Adam A. Stokes

Research output: Contribution to journalArticlepeer-review


This work describes the design, fabrication, and initial testing of a Soft Orthotic Physiotherapy Hand Interactive Aid (SOPHIA) for stroke rehabilitation. SOPHIA consists of (1) a soft robotic exoskeleton, (2) a microcontroller-based control system driven by a brain–machine interface (BMI), and (3) a sensorized glove for passive rehabilitation. In contrast to other rehabilitation devices, SOPHIA is the first modular prototype of a rehabilitation system that is capable of three tasks: aiding extension based assistive rehabilitation, monitoring patient exercises, and guiding passive rehabilitation. Our results show that this prototype of the device is capable of helping healthy subjects to open their hand. Finger extension is triggered by a command from the BMI, while using a variety of sensors to ensure a safe motion. All data gathered from the device will be used to guide further improvements to the prototype, aiming at developing specifications for the next generation device, which could be used in future clinical trials.
Original languageEnglish
Article number3
Pages (from-to)1-13
Number of pages13
JournalFrontiers in Mechanical Engineering
Publication statusPublished - 2 Jun 2017


Dive into the research topics of 'SOPHIA: Soft Orthotic Physiotherapy Hand Interactive Aid'. Together they form a unique fingerprint.

Cite this