Sparsification of neuronal activity in the visual cortex at eye-opening

Nathalie L. Rochefort, Olga Garaschuk, Ruxandra-Iulia Milos, Madoka Narushima, Nima Marandi, Bruno Pichler, Yury Kovalchuk, Arthur Konnerth*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Eye-opening represents a turning point in the function of the visual cortex. Before eye-opening, the visual cortex is largely devoid of sensory inputs and neuronal activities are generated intrinsically. After eye-opening, the cortex starts to integrate visual information. Here we used in vivo two-photon calcium imaging to explore the developmental changes of the mouse visual cortex by analyzing the ongoing spontaneous activity. We found that before eye-opening, the activity of layer 2/3 neurons consists predominantly of slow wave oscillations. These waves were first detected at postnatal day 8 (P8). Their initial very low frequency (0.01 Hz) gradually increased during development to approximate to 0.5 Hz in adults. Before eye-opening, a large fraction of neurons (>75%) was active during each wave. One day after eye-opening, this dense mode of recruitment changed to a sparse mode with only 36% of active neurons per wave. This was followed by a progressive decrease during the following weeks, reaching 12% of active neurons per wave in adults. The possible role of visual experience for this process of sparsification was investigated by analyzing dark-reared mice. We found that sparsification also occurred in these mice, but that the switch from a dense to a sparse activity pattern was delayed by 3-4 days as compared with normally-reared mice. These results reveal a modulatory contribution of visual experience during the first days after eye-opening, but an overall dominating role of intrinsic factors. We propose that the transformation in network activity from dense to sparse is a prerequisite for the changed cortical function at eye-opening.

Original languageEnglish
Pages (from-to)15049-15054
Number of pages6
JournalProceedings of the National Academy of Sciences
Volume106
Issue number35
DOIs
Publication statusPublished - 1 Sep 2009

Keywords

  • mouse
  • BARREL CORTEX
  • two-photon imaging
  • RESPONSES
  • RETINAL WAVES
  • DYNAMICS
  • calcium waves
  • IN-VIVO
  • NETWORK MECHANISMS
  • NEOCORTEX
  • cortical development
  • CALCIUM WAVES
  • up-down states
  • OSCILLATIONS
  • PLASTICITY

Fingerprint

Dive into the research topics of 'Sparsification of neuronal activity in the visual cortex at eye-opening'. Together they form a unique fingerprint.

Cite this