Spin Resonance in the d-Wave Superconductor CeCoIn5

Christopher Stock, Collin Broholm, J Hudis, H Kang, C Petrovic

Research output: Contribution to journalArticlepeer-review

Abstract

Neutron scattering is used to probe antiferromagnetic spin fluctuations in the d-wave heavy fermion superconductor CeCoIn5 (Tc=2.3  K). Superconductivity develops from a state with slow (ℏΓ=0.3±0.15  meV) commensurate [Q0=(1/2,1/2,1/2)] antiferromagnetic spin fluctuations and nearly isotropic spin correlations. The characteristic wave vector in CeCoIn5 is the same as CeIn3 but differs from the incommensurate wave vector measured in antiferromagnetically ordered CeRhIn5. A sharp spin resonance (ℏΓ<0.07  meV) at ℏω=0.60±0.03  meV develops in the superconducting state removing spectral weight from low-energy transfers. The presence of a resonance peak is indicative of strong coupling between f-electron magnetism and superconductivity and consistent with a d-wave gap order parameter satisfying Δ(q+Q0)=-Δ(q).
Original languageEnglish
Article number087001
Number of pages4
JournalPhysical Review Letters
Volume100
Issue number8
DOIs
Publication statusPublished - 28 Feb 2008

Fingerprint

Dive into the research topics of 'Spin Resonance in the d-Wave Superconductor CeCoIn5'. Together they form a unique fingerprint.

Cite this