Stereotypes and Smut: The (Mis)representation of Non-cisgender Identities by Text-to-Image Models

Eddie Ungless, Björn Ross*, Anne Lauscher

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract / Description of output

Cutting-edge image generation has been praised for producing high-quality images, suggesting a ubiquitous future in a variety of applications. However, initial studies have pointed to the potential for harm due to predictive bias, reflecting and potentially reinforcing cultural stereotypes. In this work, we are the first to investigate how multimodal models handle diverse gender identities. Concretely, we conduct a thorough analysis in which we compare the output of three image generation models for prompts containing cisgender vs. non-cisgender identity terms. Our findings demonstrate that certain non-cisgender identities are consistently (mis)represented as less human, more stereotyped and more sexualised. We complement our experimental analysis with (a)~a survey among non-cisgender individuals and (b) a series of interviews, to establish which harms affected individuals anticipate, and how they would like to be represented. We find respondents are particularly concerned about misrepresentation, and the potential to drive harmful behaviours and beliefs. Simple heuristics to limit offensive content are widely rejected, and instead respondents call for community involvement, curated training data and the ability to customise. These improvements could pave the way for a future where change is led by the affected community, and technology is used to positively ``[portray] queerness in ways that we haven't even thought of'' rather than reproducing stale, offensive stereotypes
Original languageEnglish
Title of host publicationFindings of the Association for Computational Linguistics: ACL 2023
Place of PublicationStroudsburg
PublisherAssociation for Computational Linguistics (ACL)
Pages7919–7942
Number of pages22
ISBN (Electronic)9781959429623
Publication statusPublished - 9 Jul 2023
Event61st Annual Meeting of the Association for Computational Linguistics - Toronto, Canada
Duration: 9 Jul 202314 Jul 2023
Conference number: 61
https://2023.aclweb.org/

Conference

Conference61st Annual Meeting of the Association for Computational Linguistics
Abbreviated titleACL 2023
Country/TerritoryCanada
CityToronto
Period9/07/2314/07/23
Internet address

Fingerprint

Dive into the research topics of 'Stereotypes and Smut: The (Mis)representation of Non-cisgender Identities by Text-to-Image Models'. Together they form a unique fingerprint.

Cite this