Abstract
We propose an algebraic approach to stochastic graph-rewriting which extends the classical construction of the Heisenberg-Weyl algebra and its canonical representation on the Fock space. Rules are seen as particular elements of an algebra of “diagrams”: the diagram algebra D. Diagrams can be thought of as formal computational traces represented in partial time. They can be evaluated to normal diagrams (each corresponding to a rule) and generate an associative unital
non-commutative algebra of rules: the rule algebra R. Evaluation becomes a morphism of unital associative algebras which maps general diagrams in D to normal ones in R. In this algebraic reformulation, usual distinctions between graph observables (real-valued maps on the set of graphs defined by counting subgraphs) and rules disappear. Instead, natural algebraic substructures ofR arise: formal observables are seen as rules with equal left and right hand sides and form a commutative subalgebra, the ones counting subgraphs forming a sub-subalgebra of identity rules. Actual graph-rewriting is recovered as a canonical representation of the rule algebra as linear operators over the vector space generated by (isomorphism classes of) finite graphs. The construction of the representation is in close analogy with and subsumes the classical (multi-type bosonic) Fock space representation of the Heisenberg-Weyl algebra. This shift of point of view, away from its canonical representation to the rule algebra itself, has unexpected consequences. We find that natural variants of the evaluation morphism map give rise to concepts of graph transformations hitherto not considered. These will be described in a separate paper [2]. In this extended abstract we limit ourselves to the simplest concept of double-pushout rewriting (DPO). We establish “jump-closure”, i.e. that the subspace of representations of formal graph observables is closed under the action of any rule set. It follows that for any rule set, one can derive a formal and self-consistent Kolmogorov backward equation for (representations of) formal observables.
non-commutative algebra of rules: the rule algebra R. Evaluation becomes a morphism of unital associative algebras which maps general diagrams in D to normal ones in R. In this algebraic reformulation, usual distinctions between graph observables (real-valued maps on the set of graphs defined by counting subgraphs) and rules disappear. Instead, natural algebraic substructures ofR arise: formal observables are seen as rules with equal left and right hand sides and form a commutative subalgebra, the ones counting subgraphs forming a sub-subalgebra of identity rules. Actual graph-rewriting is recovered as a canonical representation of the rule algebra as linear operators over the vector space generated by (isomorphism classes of) finite graphs. The construction of the representation is in close analogy with and subsumes the classical (multi-type bosonic) Fock space representation of the Heisenberg-Weyl algebra. This shift of point of view, away from its canonical representation to the rule algebra itself, has unexpected consequences. We find that natural variants of the evaluation morphism map give rise to concepts of graph transformations hitherto not considered. These will be described in a separate paper [2]. In this extended abstract we limit ourselves to the simplest concept of double-pushout rewriting (DPO). We establish “jump-closure”, i.e. that the subspace of representations of formal graph observables is closed under the action of any rule set. It follows that for any rule set, one can derive a formal and self-consistent Kolmogorov backward equation for (representations of) formal observables.
Original language | English |
---|---|
Title of host publication | LICS '16 Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science |
Publisher | ACM |
Pages | 46-55 |
Number of pages | 10 |
Volume | New York, USA |
ISBN (Print) | 978-1-4503-4391-6 |
DOIs | |
Publication status | Published - 5 Jul 2016 |
Event | 31st Annual ACM/IEEE Symposium on Logic in Computer Science - New York City, United States Duration: 5 Jul 2016 → 8 Jul 2016 http://lics.siglog.org/lics16/ |
Conference
Conference | 31st Annual ACM/IEEE Symposium on Logic in Computer Science |
---|---|
Abbreviated title | LICS 2016 |
Country | United States |
City | New York City |
Period | 5/07/16 → 8/07/16 |
Internet address |
Fingerprint Dive into the research topics of 'Stochastic mechanics of graph rewriting'. Together they form a unique fingerprint.
Profiles
-
Vincent Danos
- School of Informatics - Chair of Computational Systems Biology
- Laboratory for Foundations of Computer Science
- Foundations of Computation
- SynthSys
Person: Academic: Research Active