Abstract / Description of output
Bypassing tyrosine kinases responsible for Stat5a/b phosphorylation would be advantageous for therapy development for Stat5a/b-regulated cancers. Here, we sought to identify small-molecule inhibitors of Stat5a/b for lead optimization and therapy development for prostate cancer (PC) and Bcr-Abl-driven leukemias. In silico screening of chemical structure databases combined with medicinal chemistry was used for identification of a panel of small-molecule inhibitors to block SH2-domain-mediated docking of Stat5a/b to the receptor-kinase complex and subsequent phosphorylation and dimerization. We tested the efficacy of the lead-compound, IST5-002, in experimental models and patient samples of two known Stat5a/b-driven cancers, prostate cancer (PC) and chronic myeloid leukemia (CML). The lead compound Inhibitor of Stat5-002 (IST5-002) prevented both Jak2 and Bcr-Abl-mediated phosphorylation and dimerization of Stat5a/b, and selectively inhibited transcriptional activity of Stat5a (IC50 1.5 μM) and Stat5b (IC50 3.5 μM). IST5-002 suppressed nuclear translocation of Stat5a/b, binding to DNA and Stat5a/b target gene expression. IST5-002 induced extensive apoptosis of PC cells, impaired growth of PC xenograft tumors and induced cell death in patient-derived PCs when tested ex vivo in explant organ cultures. Importantly, IST5-002 induced robust apoptotic death not only of imatinib-sensitive but also imatinib-resistant chronic myeloid leukemia (CML) cell lines and primary CML cells from patients. IST5-002 provides a lead structure for further chemical modifications for clinical development for Stat5a/b-driven solid tumors and hematological malignancies.
Original language | English |
---|---|
Journal | Molecular Cancer Therapeutics |
DOIs | |
Publication status | Published - 29 May 2015 |