Studies of pear-shaped nuclei using accelerated radioactive beams

L.P. Gaffney, P.A. Butler, M. Scheck, D.T. Joss, S.V. Rigby, C. Bauer, S. Bönig, T. Kröll, M. Von Schmid, A.B. Hayes, D. Cline, F. Wenander, T.E. Cocolios, J. Pakarinen, T. Stora, D. Voulot, M. Albers, A. Blazhev, K. Moschner, M. PfeifferD. Radeck, P. Reiter, M. Rudigier, M. Seidlitz, B. Siebeck, P. Thoele, N. Warr, B. Bastin, N. Bree, H. De Witte, J. Diriken, M. Huyse, N. Kesteloot, K. Reynders, S. Sambi, P. Van Duppen, K. Wrzosek-Lipska, J. Cederkäll, T. Chupp, T. Davinson, T. Grahn, A. Herzan, J. Konki, D.G. Jenkins, M.J. Vermeulen, M. Kowalczyk, P. Napiorkowski, M. Zielinska, E. Kwan, C.Y. Wu, R. Lutter, L.M. Robledo, K. Wimmer

Research output: Contribution to journalArticlepeer-review

Abstract

There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are 'octupole deformed', that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on 220 Rn and 224 Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental studies of atomic electric-dipole moments that might reveal extensions to the standard model.
Original languageEnglish
Pages (from-to)199-204
Number of pages6
JournalNature
Volume497
Issue number7448
DOIs
Publication statusPublished - 1 Jan 2013

Fingerprint Dive into the research topics of 'Studies of pear-shaped nuclei using accelerated radioactive beams'. Together they form a unique fingerprint.

Cite this