TY - JOUR
T1 - Suppressive functions of activated B cells in autoimmune diseases reveal the dual roles of Toll-like receptors in immunity
AU - Lampropoulou, Vicky
AU - Calderon-Gomez, Elisabeth
AU - Roch, Toralf
AU - Neves, Patricia
AU - Shen, Ping
AU - Stervbo, Ulrik
AU - Boudinot, Pierre
AU - Anderton, Stephen M.
AU - Fillatreau, Simon
PY - 2010/1
Y1 - 2010/1
N2 - B lymphocytes contribute to immunity through production of antibodies, antigen presentation to T cells, and secretion of cytokines. B cells are generally considered in autoimmune diseases as drivers of pathogenesis. This view is certainly justified, given the successful utilization of the B cell-depleting reagent rituximab in patients with rheumatoid arthritis or other autoimmune pathologies. In a number of cases, however, the depletion of B cells led to an exacerbation of symptoms in patients with autoimmune disorders. In a similar manner, mice lacking B cells can develop an aggravated course of disease in several autoimmune models. These paradoxical observations are now explained by the concept that activated B cells can suppress immune responses through the production of cytokines, especially interleukin-10. Here, we review the stimulatory signals that induce interleukin-10 secretion and suppressive functions in B cells and the phenotype of the B cells with such characteristics. Finally, we formulate a model explaining how this process of immune regulation by activated B cells can confer advantageous properties to the immune system in its combat with pathogens. Altogether, this review proposes that B-cell-mediated regulation is a fundamental property of the immune system, with features of great interest for the development of new cell-based therapies for autoimmune diseases.
AB - B lymphocytes contribute to immunity through production of antibodies, antigen presentation to T cells, and secretion of cytokines. B cells are generally considered in autoimmune diseases as drivers of pathogenesis. This view is certainly justified, given the successful utilization of the B cell-depleting reagent rituximab in patients with rheumatoid arthritis or other autoimmune pathologies. In a number of cases, however, the depletion of B cells led to an exacerbation of symptoms in patients with autoimmune disorders. In a similar manner, mice lacking B cells can develop an aggravated course of disease in several autoimmune models. These paradoxical observations are now explained by the concept that activated B cells can suppress immune responses through the production of cytokines, especially interleukin-10. Here, we review the stimulatory signals that induce interleukin-10 secretion and suppressive functions in B cells and the phenotype of the B cells with such characteristics. Finally, we formulate a model explaining how this process of immune regulation by activated B cells can confer advantageous properties to the immune system in its combat with pathogens. Altogether, this review proposes that B-cell-mediated regulation is a fundamental property of the immune system, with features of great interest for the development of new cell-based therapies for autoimmune diseases.
UR - http://www.scopus.com/inward/record.url?scp=73249114021&partnerID=8YFLogxK
M3 - Literature review
VL - 233
SP - 146
EP - 161
JO - Immunological reviews
JF - Immunological reviews
SN - 0105-2896
ER -