SyNPL: Synthetic notch pluripotent cell lines to monitor and manipulate cell interactions in vitro and in vivo

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Cell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here, we introduce SyNPL: clonal pluripotent stem cell lines that employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered 'sender' and 'receiver' cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new adaptation of SynNotch technology that could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and that can be customised to generate synthetic patterning of cell fate decisions.

Original languageEnglish
Article numberdev200226
Number of pages46
JournalDevelopment
Volume149
Issue number12
DOIs
Publication statusPublished - 23 Jun 2022

Keywords / Materials (for Non-textual outputs)

  • cell interaction
  • SynNotch
  • pluripotent stem cells
  • cell engineering
  • patterning

Fingerprint

Dive into the research topics of 'SyNPL: Synthetic notch pluripotent cell lines to monitor and manipulate cell interactions in vitro and in vivo'. Together they form a unique fingerprint.

Cite this