Projects per year
Abstract / Description of output
The heterobimetallic complex [Cu(II)Mn(III)(L)(2)(py)(4)](ClO4)center dot EtOH (1) built using the pro-ligand 2,2'-biphenol (LH2), contains a rare example of a Jahn-Teller compressed Mn(III) centre. Dc magnetic susceptibility measurements on 1 reveal a strong antiferromagnetic exchange between the Cu(II) and Mn(III) ions mediated through the phenolate O-atoms (J = -33.4 cm(-1)), with magnetisation measurements at low temperatures and high fields suggesting significant anisotropy. Simulations of high-field and high frequency powder EPR data suggest a single-ion anisotropy D-Mn(III) = +4.45 cm(-1). DFT calculations also yield an antiferromagnetic exchange for 1, though the magnitude is overestimated (J(DFT) = -71 cm(-1)). Calculations reveal that the antiferromagnetic interaction essentially stems from the Mn(d(x2-y2))-Cu(d(x2-y2)) interaction. The computed single-ion anisotropy and cluster anisotropy also correlates well with experiment. A larger cluster anisotropy for the S = 3/2 state compared to the single-ion anisotropy of Mn(III) is rationalised on the basis of orbital mixing and various contributions that arise due to the spin-orbit interaction.
Original language | English |
---|---|
Pages (from-to) | 207-216 |
Number of pages | 10 |
Journal | Dalton Transactions |
Volume | 42 |
Issue number | 1 |
DOIs | |
Publication status | Published - 7 Jan 2013 |
Fingerprint
Dive into the research topics of 'Synthetic, structural, spectroscopic and theoretical study of a Mn(III)-Cu(II) dimer containing a Jahn-Teller compressed Mn ion'. Together they form a unique fingerprint.Projects
- 1 Finished