Technoeconomic evaluation of separation solvents and technologies for Continuous Pharmaceutical Manufacturing (CPM) of Four Key Drug Substances (DS)

Research output: Contribution to journalArticlepeer-review

Abstract

Continuous Pharmaceutical Manufacturing (CPM) has the potential to revolutionise the pharmaceutical industry via operating and economic benefits over traditional batch techniques. Establishing efficient continuous separation processes following continuous flow syntheses of Active Pharmaceutical Ingredients (APIs) is essential to obtain the desired physical form of drug substance (DS) and successful CPM implementation. Process modelling and optimisation are essential tools for rapid screening of design alternatives to establish cost optimal process configurations for separation unit operations in integrated upstream CPM plants. This paper presents the technoeconomic optimisation for total cost minimisation for the continuous liquid-liquid extraction (LLE) of (S)-warfarin and the continuous mixed suspension mixed product removal (MSMPR) crystallisation of cyclosporine, paracetamol and aliskiren. Optimisation of continuous LLE of (S)-warfarin compares candidate separation solvents and operating temperatures with solvent feed rate and LLE tank residence time as decision variables; optimisation of continuous crystallisation processes compares the number of implemented crystallisers with MSMPR operating temperatures and residence times as decision variables. Capital (CapEx), operating (OpEx) and total expenditures are compared for different designs, elucidating cost-optimal configurations for each API with their attained recoveries and respective operating conditions. This work demonstrates the value of total cost minimisation via nonlinear optimisation prior to expensive experimental investigations and the potential of the economic benefits attainable via CPM for these APIs.

Original languageEnglish
Pages (from-to)16-19
Number of pages4
JournalChemistry Today
Volume36
Issue number3
Publication statusPublished - 5 May 2018

Keywords

  • Continuous Pharmaceutical Manufacturing (CPM)
  • design
  • separations
  • diphenhydramine
  • artemisinin
  • economics
  • FLOW CHEMISTRY
  • PURIFICATION
  • ARTEMISININ
  • INGREDIENTS
  • PERSPECTIVE
  • INDUSTRY
  • DESIGN

Fingerprint

Dive into the research topics of 'Technoeconomic evaluation of separation solvents and technologies for Continuous Pharmaceutical Manufacturing (CPM) of Four Key Drug Substances (DS)'. Together they form a unique fingerprint.

Cite this