Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes

Andrew Nottingham, B. L. Turner, Jeanette Whitaker, Nicholas J. Ostle, Richard D. Bardgett, Niall P. McNamara, N. Salinas, Patrick Meir

Research output: Contribution to journalArticlepeer-review


Soil enzymes are catalysts of organic matter depolymerisation, which is of critical importance for ecosystem carbon (C) cycling. Better understanding of the sensitivity of enzymes to temperature will enable improved predictions of climate change impacts on soil C stocks. These impacts may be especially large in tropical montane forests, which contain large amounts of soil C. We determined the temperature sensitivity (Q 10) of a range of hydrolytic and oxidative enzymes involved in organic matter cycling from soils along a 1900 m elevation gradient (a 10 °C mean annual temperature gradient) of tropical montane forest in the Peruvian Andes. We investigated whether the activity (V max) of selected enzymes: (i) exhibited a Q 10 that varied with elevation and/or soil properties; and (ii) varied among enzymes and according to the complexity of the target substrate for C-degrading enzymes. The Q 10 of V max for β-glucosidase and β-xylanase increased with increasing elevation and declining mean annual temperature. For all other enzymes, including cellobiohydrolase, N-acetyl β-glucosaminidase and phosphomonoesterase, the Q 10 of V max did not vary linearly with elevation. Hydrolytic enzymes that degrade more complex C compounds had a greater Q 10 of V max, but this pattern did not apply to oxidative enzymes because phenol oxidase had the lowest Q 10 value of all enzymes studied here. Our findings suggest that regional differences in the temperature sensitivities of different enzyme classes may influence the terrestrial C cycle under future climate warming.
Original languageEnglish
Pages (from-to)217-230
Issue number2
Early online date22 Feb 2016
Publication statusPublished - Feb 2016


Dive into the research topics of 'Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes'. Together they form a unique fingerprint.

Cite this