Temporal processing with volatile memristors

R. Berdan, T. Prodromakis, A. Khiat, I. Salaoru, C. Toumazou, F. Perez-Diaz, E. Vasilaki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Short-term synaptic plasticity (STP) is a mechanism identified in brain systems according to which the effective connection strength (synaptic strength) between two neurons varies dynamically with recent communication history. As a consequence, the amplitude of the post-synaptic potential in response to a single pre-synaptic event, so-called 'spike', may increase (short-term facilitation) or decrease (short-term depression) with consecutive presynaptic stimulation. However, in contrast to Long-term Synaptic plasticity, these changes are temporary and are typically restored in the absence of input. Interestingly, however, a single neuron which receives input via both facilitating and depressing synapses has improved discrimination capability, distinguishing, for instance, between a sequence of events and a sequence of the same events presented in the reversed order. We, therefore, studied the memory mechanisms in emerging non-CMOS devices with a view to application in temporal pattern recognition and detection, inspired by the STP mechanisms. In particular, we demonstrate that memristors can exhibit a resembling behavior to STP due to an inherent volatility and hysteresis. When stimulated by closely spaced pulse waves, the conductance of the device decreases similar to what a depressing synapse would do if presented with consecutive pre-synaptic spikes. This work paves the way for employing memristors in solving spatio-temporal sequence learning problems.

Original languageEnglish
Title of host publication2013 IEEE International Symposium on Circuits and Systems, ISCAS 2013
Pages425-428
Number of pages4
DOIs
Publication statusPublished - 1 Aug 2013
Event2013 IEEE International Symposium on Circuits and Systems, ISCAS 2013 - Beijing, China
Duration: 19 May 201323 May 2013

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
ISSN (Print)0271-4310

Conference

Conference2013 IEEE International Symposium on Circuits and Systems, ISCAS 2013
Country/TerritoryChina
CityBeijing
Period19/05/1323/05/13

Fingerprint

Dive into the research topics of 'Temporal processing with volatile memristors'. Together they form a unique fingerprint.

Cite this