Tetrahedral and Square Planar Ni[(SPR2)(2)N](2) complexes, R = Ph & Pr-i Revisited: Experimental and Theoretical Analysis of Interconversion Pathways, Structural Preferences, and Spin De localization

Dimitrios Maganas, Alexios Grigoropoulos, Sarah S. Staniland, Spyros D. Chatziefthimiou, Andrew Harrison, Neil Robertson, Panayotis Kyritsis, Frank Neese

Research output: Contribution to journalArticlepeer-review


Sulfur-containing mono- or bidentate types of ligands, usually form square planar (NiS4)-S-(II) complexes. However, it has already been established that the bidentate L- dithoimidodiphosphinato ligands, [R2P(S)NP(S)R'(2)](-), R, and R' = aryl or alkyl, can afford both tetrahedral and square planar, NiS4-containing, homoleptic (NiL2)-L-R,R' complexes, owing to an apparent structural flexibility, which has not, so far, been probed. In this work, the literature tetrahedral Ni[R2P(S)NP(S)R-2](2) complexes, R = Ph ((NiL2)-L-Ph,Ph, 1(Td)) and R = Pr-i ((NiL2)-L-iPr,iPr, 2) as well as the newly synthesized Ni[R2P(S)NP(S)Ph-2](2) complex ((NiL2)-L-iPr,Ph, 3), have been studied by UV-vis, IR, and P-31 NMR spectroscopy. Complex 3 was shown by X-ray crystallography to be square planar, and magnetic studies confirmed that it is diamagnetic in the solid state. However, it becomes paramagnetic in solution, as it shows a similar UV-vis spectrum to one of the tetrahedral 1(Td) and 2 complexes. The crystal structure of the potassium salt of the asymmetric ligand, [(Pr2P)-Pr-i(S)NP(S)Ph-2]K, has also been determined and compared to those of the protonated (Pr2P)-Pr-i(S)NHP(S)Ph-2 ligand and complex 3. All three, 1(Td), 2, and 3, (NiL2)-L-R,R' complexes show strong paramagnetic effects in their solution P-31 NMR spectra. The magnetic properties of paramagnetic complexes 1 and 2 in the solid state were investigated on oriented crystals, and their analysis afforded remarkably small values of the spin-orbit coupling constant (lambda) and orbital reduction factor (kappa) parameters, implying significant delocalization of unpaired electronic density toward the ligands. The above experimental findings are combined with data from standard density functional theory and correlated multiconfiguration ab initio theoretical methods, in an effort to investigate the interplay between the square planar and tetrahedral geometries of the NiS4 core, the mechanistic pathway for the spin-state interconversion, the degree of covalency of the Ni-S bonds, and the distribution of the spin density in this type of system. The analysis provides justification for the structural flexibility of such ligands, affording (NiL2)-L-R,R' complexes with variable metallacycle conformation and NiS4 core geometries. Of particular importance are the large zero-field splitting values estimated by both experimental and theoretical means, which have not, as yet, been verified by direct methods, such as electron paramagnetic resonance spectroscopy. The findings of our work confirm earlier observations on the feasibility of synthesizing either tetrahedral or square planar NiS4 complexes containing the same type of ligands. They can also form the basis of investigating structure-properties relationships in other NiS4-containing systems.

Original languageEnglish
Pages (from-to)5079-5093
Number of pages15
JournalInorganic Chemistry
Issue number11
Publication statusPublished - 7 Jun 2010




Dive into the research topics of 'Tetrahedral and Square Planar Ni[(SPR2)(2)N](2) complexes, R = Ph & Pr-i Revisited: Experimental and Theoretical Analysis of Interconversion Pathways, Structural Preferences, and Spin De localization'. Together they form a unique fingerprint.

Cite this