Projects per year
Abstract / Description of output
Surface observations have recorded large and incompletely understood changes to atmospheric methane (CH4) this century. However, their ability to reveal the responsible surface sources and sinks is limited by their geographical distribution, which is biased towards the northern midlatitudes. Data from Earth-orbiting satellites designed specifically to measure atmospheric CH4 have been available since 2009 with the launch of the Japanese Greenhouse gases Observing SATellite (GOSAT). We assess the added value of GOSAT to data collected by the US National Oceanic and Atmospheric Administration (NOAA), which have been the lynchpin for knowledge about atmospheric CH4 since the 1980s. To achieve that we use the GEOS-Chem atmospheric chemistry transport model and an inverse method to infer a posteriori flux estimates from the NOAA and GOSAT data using common a priori emission inventories. We find the main benefit of GOSAT data is from its additional coverage over the tropics where we report large increases since the 2014/2016 El Niño, driven by biomass burning, biogenic emissions and energy production. We use data from the European TROPOspheric Monitoring Instrument to show how better spatial coverage and resolution measurements allow us to quantify previously unattainable diffuse sources of CH4, thereby opening up a new research frontier.
Original language | English |
---|---|
Journal | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences |
DOIs | |
Publication status | Published - 27 Sept 2021 |
Fingerprint
Dive into the research topics of 'The added value of satellite observations of methane for understanding the contemporary methane budget'. Together they form a unique fingerprint.Projects
- 2 Finished