THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT

AGORA Collaboration, Ji-hoon Kim*, Tom Abel, Oscar Agertz, Greg L. Bryan, Daniel Ceverino, Charlotte Christensen, Charlie Conroy, Avishai Dekel, Nickolay Y. Gnedin, Nathan J. Goldbaum, Javiera Guedes, Oliver Hahn, Alexander Hobbs, Philip F. Hopkins, Cameron B. Hummels, Francesca Iannuzzi, Dusan Keres, Anatoly Klypin, Andrey V. KravtsovMark R. Krumholz, Michael Kuhlen, Samuel N. Leitner, Piero Madau, Lucio Mayer, Christopher E. Moody, Kentaro Nagamine, Michael L. Norman, Jose Onorbe, Brian W. O'Shea, Annalisa Pillepich, Joel R. Primack, Thomas Quinn, Justin I. Read, Brant E. Robertson, Miguel Rocha, Douglas H. Rudd, Sijing Shen, Britton D. Smith, Alexander S. Szalay, Romain Teyssier, Robert Thompson, Keita Todoroki, Matthew J. Turk, James W. Wadsley, John H. Wise, Adi Zolotov

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We introduce the Assembling Galaxies Of Resolved Anatomy (AGORA) project, a comprehensive numerical study of well-resolved galaxies within the Lambda CDM cosmology. Cosmological hydrodynamic simulations with force resolutions of similar to 100 proper pc or better will be run with a variety of code platforms to follow the hierarchical growth, star formation history, morphological transformation, and the cycle of baryons in and out of eight galaxies with halo masses M-vir similar or equal to 10(10), 10(11), 10(12), and 10(13) M-circle dot at z = 0 and two different ("violent" and "quiescent") assembly histories. The numerical techniques and implementations used in this project include the smoothed particle hydrodynamics codes GADGET and GASOLINE, and the adaptive mesh refinement codes ART, ENZO, and RAMSES. The codes share common initial conditions and common astrophysics packages including UV background, metaldependent radiative cooling, metal and energy yields of supernovae, and stellar initial mass function. These are described in detail in the present paper. Subgrid star formation and feedback prescriptions will be tuned to provide a realistic interstellar and circumgalactic medium using a non-cosmological disk galaxy simulation. Cosmological runs will be systematically compared with each other using a common analysis toolkit and validated against observations to verify that the solutions are robust-i.e., that the astrophysical assumptions are responsible for any success, rather than artifacts of particular implementations. The goals of the AGORA project are, broadly speaking, to raise the realism and predictive power of galaxy simulations and the understanding of the feedback processes that regulate galaxy "metabolism." The initial conditions for the AGORA galaxies as well as simulation outputs at various epochs will be made publicly available to the community. The proof-of-concept dark-matter-only test of the formation of a galactic halo with a z = 0 mass of M-vir similar or equal to 1.7 x 10(11) M-circle dot by nine different versions of the participating codes is also presented to validate the infrastructure of the project.

Original languageEnglish
Article number14
Number of pages20
JournalAstrophysical Journal Supplement
Volume210
Issue number1
DOIs
Publication statusPublished - Jan 2014

Keywords

  • cosmology: theory
  • dark matter
  • galaxies: formation
  • galaxies: evolution
  • hydrodynamics methods: numerical
  • SMOOTHED PARTICLE HYDRODYNAMICS
  • ADAPTIVE MESH REFINEMENT
  • GIANT MOLECULAR CLOUDS
  • STAR-FORMATION LAW
  • DARK-MATTER HALOS
  • FORCE-CALCULATION ALGORITHM
  • PIECEWISE PARABOLIC METHOD
  • COSMIC STRUCTURE FORMATION
  • N-BODY SIMULATIONS
  • STELLAR MASS-LOSS

Fingerprint

Dive into the research topics of 'THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT'. Together they form a unique fingerprint.

Cite this