Projects per year
Abstract / Description of output
We provide a framework for part of the homological theory of -algebras and their generalisations, directed towards analogues of the Auslander–Gorenstein condition and the associated double Ext spectral sequence that are useful for enveloping algebras of Lie algebras and related rings. As an application, we prove the equidimensionality of the characteristic variety of an irreducible representation of the -algebra, and for related representations over quantum symplectic resolutions. In the special case of Cherednik algebras of type A, this answers a question raised by the authors.
Original language | English |
---|---|
Pages (from-to) | 102-130 |
Number of pages | 29 |
Journal | Journal of Algebra |
Volume | 399 |
Early online date | 31 Oct 2013 |
DOIs | |
Publication status | Published - Feb 2014 |
Fingerprint
Dive into the research topics of 'The Auslander-Gorenstein property for Z-algebras'. Together they form a unique fingerprint.Projects
- 1 Finished
-
RIGID STRUCTURE IN NONCOMMUTATIVE, GEOMETRIC & COMBINATORIAL PROBLEMS
1/09/08 → 30/06/14
Project: Research
Profiles
-
Iain Gordon
- College of Science and Engineering - Vice Principal, Head of the College of Sciences and Engineer
Person: Academic: Research Active