TY - JOUR
T1 - The challenges of identifying and classifying child sexual exploitation material
T2 - Moving towards a more ecologically valid pilot study with digital forensics analysts
AU - Kloess, Juliane A.
AU - Woodhams, Jessica
AU - Hamilton-Giachritsis, Catherine E.
N1 - Funding Information: The authors would like to express their gratitude and appreciation to the specialist unit at a UK police force for their assistance, time and effort in supporting the study undertaken and presented here, as well as the School of Psychology at the University of Birmingham for supporting this study through pump-priming funding.
PY - 2021/8/1
Y1 - 2021/8/1
N2 - BackgroundWhen child sexual exploitation material is seized, digital forensics analysts are required to manually process all “unknown” digital material by determining (a) whether a child is present in the image, and (b) whether the image is of an indecent nature (i.e., illegal).ObjectiveThe aim of the present study was to (a) assess the reliability with which CSEM is classified as being of an indecent nature, and (b) examine in detail the decision-making process by analysts.Participants and settingFive analysts from a specialist unit at a UK police force took part in the study.MethodsParticipants coded a set of 100 images in order to (i) determine the presence of a child, (ii) estimate the approximate age of the child, and (iii) establish the level of severity depicted in accordance with the UK's legal classification system. Qualitative interviews were conducted to develop a better understanding of analysts' decision-making during the process of identifying and analyzing child sexual exploitation material.ResultsInter-rater reliability analyses revealed that the level of agreement among analysts was moderate to good in terms of age estimation, and very good in terms of image classification. Using thematic analysis, three superordinate themes were identified, namely (i) establishing the presence of a child, (ii) ambiguity of context, and (iii) coding within legal parameters.ConclusionsA number of specific aspects and features were identified to play a key role in analysts' decision-making process which may be used to inform current developments that aim to partially automate this process.
AB - BackgroundWhen child sexual exploitation material is seized, digital forensics analysts are required to manually process all “unknown” digital material by determining (a) whether a child is present in the image, and (b) whether the image is of an indecent nature (i.e., illegal).ObjectiveThe aim of the present study was to (a) assess the reliability with which CSEM is classified as being of an indecent nature, and (b) examine in detail the decision-making process by analysts.Participants and settingFive analysts from a specialist unit at a UK police force took part in the study.MethodsParticipants coded a set of 100 images in order to (i) determine the presence of a child, (ii) estimate the approximate age of the child, and (iii) establish the level of severity depicted in accordance with the UK's legal classification system. Qualitative interviews were conducted to develop a better understanding of analysts' decision-making during the process of identifying and analyzing child sexual exploitation material.ResultsInter-rater reliability analyses revealed that the level of agreement among analysts was moderate to good in terms of age estimation, and very good in terms of image classification. Using thematic analysis, three superordinate themes were identified, namely (i) establishing the presence of a child, (ii) ambiguity of context, and (iii) coding within legal parameters.ConclusionsA number of specific aspects and features were identified to play a key role in analysts' decision-making process which may be used to inform current developments that aim to partially automate this process.
KW - child pornography
KW - child sexual exploitation material
KW - internet sexual offending
KW - online child sexual exploitation and abuse
KW - sexual offenses
U2 - 10.1016/j.chiabu.2021.105166
DO - 10.1016/j.chiabu.2021.105166
M3 - Article
SN - 0145-2134
VL - 118
JO - Child Abuse and Neglect
JF - Child Abuse and Neglect
ER -