TY - JOUR
T1 - The critical time window for androgen-dependent development of the Wolffian duct in the rat
AU - Welsh, Michelle
AU - Saunders, Philippa T K
AU - Sharpe, Richard M
PY - 2007
Y1 - 2007
N2 - Androgens are thought to separately regulate stabilization and differentiation of the Wolffian duct (WD), but the time windows for these effects are unclear. To address this, fetal rats were exposed to flutamide within either an early window (EW) [embryonic day 15.5 (E15.5) to E17.5], when the WD degenerates in the female, or a later window (LW) (E19.5-E21.5), when the WD morphologically differentiates in the male, or during the full window of WD development (FW) (E15.5-21.5). WDs were examined for abnormalities during fetal (E21.5) or postnatal life, and anogenital distance and prostate presence/absence were recorded. Exposure to FW- or EW-flutamide, but not to LW-flutamide, induced comparable abnormalities in the fetal WD at E21.5, namely reduced WD coiling, reduced cell proliferation, reduced epithelial cell height, altered epithelial vimentin expression, and reduced expression of smooth muscle actin in the WD inner stroma. Exposure to EW- or FW-flutamide, but not to LW-flutamide, resulted in incomplete/absent WDs in more than 50% of males by adulthood, although such abnormalities were infrequent in fetal life. These findings suggest that androgen action during the EW is sufficient to promote WD morphological differentiation several days later. Because the androgen receptor is expressed in the WD stroma but not in the epithelium during this EW, WD differentiation is likely to be dependent on androgen-mediated signaling from the stroma to the epithelium. In conclusion, the critical window for androgen action in regulating WD development in the rat is between E15.5 and E17.5. This window is also important for prostate formation and anogenital distance masculinization.
AB - Androgens are thought to separately regulate stabilization and differentiation of the Wolffian duct (WD), but the time windows for these effects are unclear. To address this, fetal rats were exposed to flutamide within either an early window (EW) [embryonic day 15.5 (E15.5) to E17.5], when the WD degenerates in the female, or a later window (LW) (E19.5-E21.5), when the WD morphologically differentiates in the male, or during the full window of WD development (FW) (E15.5-21.5). WDs were examined for abnormalities during fetal (E21.5) or postnatal life, and anogenital distance and prostate presence/absence were recorded. Exposure to FW- or EW-flutamide, but not to LW-flutamide, induced comparable abnormalities in the fetal WD at E21.5, namely reduced WD coiling, reduced cell proliferation, reduced epithelial cell height, altered epithelial vimentin expression, and reduced expression of smooth muscle actin in the WD inner stroma. Exposure to EW- or FW-flutamide, but not to LW-flutamide, resulted in incomplete/absent WDs in more than 50% of males by adulthood, although such abnormalities were infrequent in fetal life. These findings suggest that androgen action during the EW is sufficient to promote WD morphological differentiation several days later. Because the androgen receptor is expressed in the WD stroma but not in the epithelium during this EW, WD differentiation is likely to be dependent on androgen-mediated signaling from the stroma to the epithelium. In conclusion, the critical window for androgen action in regulating WD development in the rat is between E15.5 and E17.5. This window is also important for prostate formation and anogenital distance masculinization.
U2 - 10.1210/en.2007-0028
DO - 10.1210/en.2007-0028
M3 - Article
C2 - 17431008
SN - 0013-7227
VL - 148
SP - 3185
EP - 3195
JO - Endocrinology
JF - Endocrinology
IS - 7
ER -