Projects per year
Abstract / Description of output
The GluN2 subtype (2A versus 2B) determines biophysical properties and signaling of forebrain NMDA receptors (NMDARs). During development, GluN2A becomes incorporated into previously GluN2B-dominated NMDARs. This “switch” is proposed to be driven by distinct features of GluN2 cytoplasmic C-terminal domains (CTDs), including a unique CaMKII interaction site in GluN2B that drives removal from the synapse. However, these models remain untested in the context of endogenous NMDARs. We show that, although mutating the endogenous GluN2B CaMKII site has secondary effects on GluN2B CTD phosphorylation, the developmental changes in NMDAR composition occur normally and measures of plasticity and synaptogenesis are unaffected. Moreover, the switch proceeds normally in mice that have the GluN2A CTD replaced by that of GluN2B and commences without an observable decline in GluN2B levels but is impaired by GluN2A haploinsufficiency. Thus, GluN2A expression levels, and not GluN2 subtype-specific CTD-driven events, are the overriding factor in the developmental switch in NMDAR composition.
Original language | English |
---|---|
Pages (from-to) | 841-851.e4 |
Journal | Cell Reports |
Volume | 25 |
Issue number | 4 |
Early online date | 23 Oct 2018 |
DOIs | |
Publication status | E-pub ahead of print - 23 Oct 2018 |
Fingerprint
Dive into the research topics of 'The developmental shift of NMDA receptor composition proceeds independently of GluN2 subunit-specific GluN2 C-terminal sequences'. Together they form a unique fingerprint.Projects
- 2 Finished
Profiles
-
Noboru Komiyama
- Deanery of Clinical Sciences - Senior Lecturer
- Centre for Clinical Brain Sciences
- Edinburgh Neuroscience
Person: Academic: Research Active