The effect of fuel bed structure on Rothermel model performance

Zakary Campbell-Lochrie*, Michael Gallagher, Nicholas Skowronski, Rory M. Hadden

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Background: Fifty years after its initial publication, Rothermel's model continues to underpin many operational fire modelling tools. Past authors have, however, suggested a possible oversensitivity of the Rothermel model to fuel depth in certain fuel types.

Aims: To evaluate Rothermel model performance based on previous observations of the effect of fuel structure on flame spread through porous fuel beds. This is informed by the consideration of the effect of fuel structure on the physical mechanisms underpinning surface flame spread.

Methods: This study uses an existing dataset of flame spread experiments in pine needle beds to evaluate the effect of fuel structure on Rothermel model predictions of spread rate and reaction intensity.

Key results: Underpredictions of spread rate occurred for compressed fuel beds, apparently driven by an underprediction of the reaction intensity.

Conclusions: A greater understanding of the role of fuel structure on the energy release within the fire front region is therefore required.

Implications: The current tendency for spread rate to be underestimated in the studied fuel beds in quiescent (no wind or slope) conditions requires further consideration given the widespread use of Rothermel's model in current operational modelling tools.

Original languageEnglish
Article numberWF23046
Number of pages13
JournalInternational Journal of Wildland Fire
Early online date14 Jul 2023
DOIs
Publication statusE-pub ahead of print - 14 Jul 2023

Keywords / Materials (for Non-textual outputs)

  • energy release
  • fire behaviour
  • fire intensity
  • flame spread
  • fuel loading
  • fuel structure
  • modelling
  • operational fire models
  • pine needle beds
  • reaction intensity
  • Rothermel

Fingerprint

Dive into the research topics of 'The effect of fuel bed structure on Rothermel model performance'. Together they form a unique fingerprint.

Cite this