Abstract
Context: A key science goal of the Gaia-ESO survey (GES) is to use the kinematics of low-mass stars in young clusters to probe their dynamical histories and how they populate the field as they become unbound. The clustering of low-mass stars around the massive W-R binary gamma^2 Velorum was one of the first GES targets. Aims: To empirically determine the radial velocity (RV) precision of GES data, construct a kinematically unbiased sample of cluster members and characterise their dynamical state. Methods: Targets were selected from colour-magnitude diagrams and intermediate resolution spectroscopy used to derive RVs and assess membership from the strength of the Li6708A line. The RV distribution was analysed using a maximum likelihood technique that accounts for unresolved binaries. Results: The GES RV precision is about 0.25km/s and sufficient to resolve velocity structure in the low-mass population around gamma^2 Vel. The structure is well fitted by two kinematic components with roughly equal numbers of stars; the first has an intrinsic dispersion of 0.34+/-0.16km/s, consistent with virial equilibrium. The second has a broader dispersion of 1.60+/-0.37km/s and is offset from the first by ~2km/s. The first population is older by 1-2Myr based on a greater level of Li depletion seen among its M-stars and is probably more centrally concentrated around gamma^2 Vel. Conclusions: We consider several formation scenarios, concluding that the two kinematic components are a bound remnant of the original, denser cluster that formed gamma^2 Vel, and a dispersed population from the wider Vela OB2 association, of which gamma^2 Vel is the most massive member. The apparent youth of gamma^2 Vel compared to the older (>=10Myr) low-mass population surrounding it suggests a scenario where the massive binary formed in a clustered environment after the formation of the bulk of the low-mass stars.
Original language | English |
---|---|
Journal | Astronomy and Astrophysics |
DOIs | |
Publication status | Published - 14 Mar 2014 |
Keywords / Materials (for Non-textual outputs)
- astro-ph.SR