The mechanism of propulsion of a model microswimmer in a viscoelastic fluid next to a solid boundary

Thomas R. Ives, Alexander Morozov

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, we study the swimming of a model organism, the so-called Taylor's swimming sheet, in a viscoelastic fluid close to a solid boundary. This situation comprises natural habitats of many swimming microorganisms, and while previous investigations have considered the effects of both swimming next to a boundary and swimming in a viscoelastic fluid, seldom have both effects been considered simultaneously. We re-visit the small wave amplitude result obtained by Elfring and Lauga ["Theory of locomotion through complex fluids," in Complex Fluids in Biological Systems, Biological and Medical Physics, Biomedical Engineering, edited by S. E. Spagnolie (Springer New York, New York, NY, 2015), pp. 283-317] and give a mechanistic explanation to the decoupling of the effects of viscoelasticity, which tend to slow the sheet, and the presence of the boundary, which tends to speed up the sheet. We also develop a numerical spectral method capable of finding the swimming speed of a waving sheet with an arbitrary amplitude and waveform. We use it to show that the decoupling mentioned earlier does not hold at finite wave amplitudes and that for some parameters the presence of a boundary can cause the viscoelastic effects to increase the swimming speed of microorganisms.

Original languageEnglish
Article number121612
JournalPhysics of Fluids
Volume29
Issue number12
DOIs
Publication statusPublished - 1 Dec 2017

Fingerprint

Dive into the research topics of 'The mechanism of propulsion of a model microswimmer in a viscoelastic fluid next to a solid boundary'. Together they form a unique fingerprint.

Cite this