TY - JOUR
T1 - The neural basis of naturalistic semantic and social cognition
AU - Thye, Melissa
AU - Hoffman, Paul
AU - Mirman, Dan
PY - 2024/3/21
Y1 - 2024/3/21
N2 - Decoding social environments and engaging meaningfully with other people are critical aspects of human cognition. Multiple cognitive systems, including social and semantic cognition, work alongside each other to support these processes. This study investigated shared processing between social and semantic systems using neuroimaging data collected during movie-viewing, which captures the multimodal environment in which social knowledge is exchanged. Semantic and social content from movie events (event-level) and movie transcripts (word-level) were used in parametric modulation analyses to test (1) the degree to which semantic and social information is processed within each respective network and (2) engagement of the same cross-network regions or the same domain-general hub located within the semantic network during semantic and social processing. Semantic word and event-level content engaged the same fronto-temporo-parietal network and a portion of the semantic hub in the anterior temporal lobe (ATL). Social word and event-level content engaged the supplementary motor area and right angular gyrus within the social network, but only social words engaged the domain-general semantic hub in left ATL. There was evidence of shared processing between the social and semantic systems in the dorsolateral portion of right ATL which was engaged by word and event-level semantic and social content. Overlap between the semantic and social word and event results was highly variable within and across participants, with the most consistent loci of overlap occurring in left inferior frontal, bilateral precentral and supramarginal gyri for social and semantic words and in bilateral superior temporal gyrus extending from ATL posteriorly into supramarginal gyri for social and semantic events. These results indicate a complex pattern of shared and distinct regions for social and semantic cognition during naturalistic processing.
AB - Decoding social environments and engaging meaningfully with other people are critical aspects of human cognition. Multiple cognitive systems, including social and semantic cognition, work alongside each other to support these processes. This study investigated shared processing between social and semantic systems using neuroimaging data collected during movie-viewing, which captures the multimodal environment in which social knowledge is exchanged. Semantic and social content from movie events (event-level) and movie transcripts (word-level) were used in parametric modulation analyses to test (1) the degree to which semantic and social information is processed within each respective network and (2) engagement of the same cross-network regions or the same domain-general hub located within the semantic network during semantic and social processing. Semantic word and event-level content engaged the same fronto-temporo-parietal network and a portion of the semantic hub in the anterior temporal lobe (ATL). Social word and event-level content engaged the supplementary motor area and right angular gyrus within the social network, but only social words engaged the domain-general semantic hub in left ATL. There was evidence of shared processing between the social and semantic systems in the dorsolateral portion of right ATL which was engaged by word and event-level semantic and social content. Overlap between the semantic and social word and event results was highly variable within and across participants, with the most consistent loci of overlap occurring in left inferior frontal, bilateral precentral and supramarginal gyri for social and semantic words and in bilateral superior temporal gyrus extending from ATL posteriorly into supramarginal gyri for social and semantic events. These results indicate a complex pattern of shared and distinct regions for social and semantic cognition during naturalistic processing.
UR - https://osf.io/acwqy
UR - https://osf.io/dur8a/
U2 - 10.1038/s41598-024-56897-3
DO - 10.1038/s41598-024-56897-3
M3 - Article
SN - 2045-2322
VL - 14
JO - Scientific Reports
JF - Scientific Reports
M1 - 6796
ER -