Abstract / Description of output
The bovine fetus, like that of other species, is a semi-allograft and the regulation of materno-fetal alloimmunity is critical to prevent its immunological rejection. In cattle, a materno-fetal alloimmune response may be beneficial at parturition. It is hypothesized that upregulation of major histocompatibility complex (MHC) class I on the fetal membranes toward the end of gestation induces a maternal alloimmune response that activates innate immune effector mechanisms, aiding in the loss of the adherence between the fetal membranes and the uterus. Loss of fetal-maternal adherence is pivotal for the timely expulsion of the fetal membranes and the absence (or reduction) of the maternal immune response may lead to retained fetal membranes, a common reproductive disorder of cattle. Currently, there is no effective treatment for retained fetal membranes and a better understanding of materno-fetal alloimmune-assisted separation of the fetal membranes may lead to novel targets for the treatment of retained fetal membranes. In this review, the regulation of materno-fetal alloimmunity during pregnancy in cattle, with a focus on placental MHC class I expression, and the importance of maternal alloimmunity for the timely separation of the fetal membranes, are discussed.
Original language | English |
---|---|
Pages (from-to) | 11-19 |
Number of pages | 9 |
Journal | Journal of Reproductive Immunology |
Volume | 112 |
DOIs | |
Publication status | Published - 9 Jun 2015 |
Keywords / Materials (for Non-textual outputs)
- Retained fetal membranes
- Major histocompatibility complex class I
- Pregnancy
- Alloimmunity
- Fetal?maternal adherence
- Cattle