The Science Case for Multi-Object Spectroscopy on the European ELT

Chris Evans, Mathieu Puech, Jose Afonso, Omar Almaini, Philippe Amram, Hervé Aussel, Beatriz Barbuy, Alistair Basden, Nate Bastian, Giuseppina Battaglia, Beth Biller, Piercarlo Bonifacio, Nicholas Bouché, Andy Bunker, Elisabetta Caffau, Stephane Charlot, Michele Cirasuolo, Yann Clenet, Francoise Combes, Chris ConseliceThierry Contini, Jean-Gabriel Cuby, Gavin Dalton, Ben Davies, Alex de Koter, Karen Disseau, Jim Dunlop, Benoît Epinat, Fabrizio Fiore, Sofia Feltzing, Annette Ferguson, Hector Flores, Adriano Fontana, Thierry Fusco, Dimitri Gadotti, Anna Gallazzi, Jesus Gallego, Emanuele Giallongo, Thiago Gonçalves, Damien Gratadour, Eike Guenther, Francois Hammer, Vanessa Hill, Marc Huertas-Company, Roridgo Ibata, Lex Kaper, Andreas Korn, Søren Larsen, Olivier Le Fèvre, Bertrand Lemasle, Claudia Maraston, Simona Mei, Yannick Mellier, Simon Morris, Göran Östlin, Thibaut Paumard, Roser Pello, Laura Pentericci, Celine Peroux, Patrick Petitjean, Myriam Rodrigues, Lucía Rodríguez-Muñoz, Daniel Rouan, Hugues Sana, Daniel Schaerer, Eduardo Telles, Scott Trager, Laurence Tresse, Niraj Welikala, Stefano Zibetti, Bodo Ziegler

Research output: Working paper

Abstract

This White Paper presents the scientific motivations for a multi-object spectrograph (MOS) on the European Extremely Large Telescope (E-ELT). The MOS case draws on all fields of contemporary astronomy, from extra-solar planets, to the study of the halo of the Milky Way and its satellites, and from resolved stellar populations in nearby galaxies out to observations of the earliest 'first-light' structures in the partially-reionised Universe. The material presented here results from thorough discussions within the community over the past four years, building on the past competitive studies to agree a common strategy toward realising a MOS capability on the E-ELT. The cases have been distilled to a set of common requirements which will be used to define the MOSAIC instrument, entailing two observational modes ('high multiplex' and 'high definition'). When combined with the unprecedented sensitivity of the E-ELT, MOSAIC will be the world's leading MOS facility. In analysing the requirements we also identify a high-multiplex MOS for the longer-term plans for the E-ELT, with an even greater multiplex (>1000 targets) to enable studies of large-scale structures in the high-redshift Universe. Following the green light for the construction of the E-ELT the MOS community, structured through the MOSAIC consortium, is eager to realise a MOS on the E-ELT as soon as possible. We argue that several of the most compelling cases for ELT science, in highly competitive areas of modern astronomy, demand such a capability. For example, MOS observations in the early stages of E-ELT operations will be essential for follow-up of sources identified by the James Webb Space Telescope (JWST). In particular, multi-object adaptive optics and accurate sky subtraction with fibres have both recently been demonstrated on sky, making fast-track development of MOSAIC feasible.
Original languageEnglish
PublisherArXiv
Pages4726
Volume1501
Publication statusPublished - 1 Jan 2015

Keywords

  • Astrophysics - Astrophysics of Galaxies
  • Astrophysics - Instrumentation and Methods for Astrophysics
  • Astrophysics - Solar and Stellar Astrophysics

Fingerprint

Dive into the research topics of 'The Science Case for Multi-Object Spectroscopy on the European ELT'. Together they form a unique fingerprint.

Cite this