Abstract
This paper argues that methods used for the classification and measurement of online education are not neutral and objective, but involved in the creation of the educational realities they claim to measure. In particular, the paper draws on material semiotics to examine cluster analysis as a ?performative device? that, to a significant extent, creates the educational entities it claims to objectively represent through the emerging body of knowledge of Learning Analytics (LA). It also offers a more critical and political reading of the algorithmic assemblages of LA, of which cluster analysis is a part. Our argument is that if we want to understand how algorithmic processes and techniques like cluster analysis function as performative devices, then we need methodological sensibilities that consider critically both their political dimensions and their technical-mathematical mechanisms. The implications for critical research in educational technology are discussed.
Original language | English |
---|---|
Pages (from-to) | 3-16 |
Number of pages | 14 |
Journal | Learning, Media and Technology |
Volume | 43 |
Issue number | 1 |
Early online date | 17 May 2016 |
DOIs | |
Publication status | Published - 2 Jan 2018 |
Keywords / Materials (for Non-textual outputs)
- algorithms
- cluster analysis
- Learning Analytics
- methods
- performativity