The thermal neutron capture cross section of the radioactive isotope $^{60}$Fe

T. Heftrich, M. Bichler, R. Dressler, K. Eberhardt, A. Endres, J. Glorius, K. Göbel, G. Hampel, M. Heftrich, F. Käppeler, C. Lederer, M. Mikorski, R. Plag, R. Reifarth, C. Stieghorst, S. Schmidt, D. Schumann, Z. Slavkovská, K. Sonnabend, A. WallnerM. Weigand, N. Wiehl, S. Zauner

Research output: Contribution to journalArticlepeer-review


50% of the heavy element abundances are produced via slow neutron capture reactions in different stellar scenarios. The underlying nucleosynthesis models need the input of neutron capture cross sections. One of the fundamental signatures for active nucleosynthesis in our galaxy is the observation of long-lived radioactive isotopes, such as $^{60}$Fe with a half-life of $2.60\times10^6$ yr. To reproduce this $\gamma$-activity in the universe, the nucleosynthesis of $^{60}$Fe has to be understood reliably. A $^{60}$Fe sample produced at the Paul-Scherrer-Institut was activated with thermal and epithermal neutrons at the research reactor at the Johannes Gutenberg-Universit\"at Mainz. The thermal neutron capture cross section has been measured for the first time to $\sigma_{\text{th}}=0.226 \ (^{+0.044}_{-0.049})$ b. An upper limit of $\sigma_{\text{RI}}
Original languageEnglish
JournalPhysical Review C
Publication statusPublished - 23 Jul 2015


  • nucl-ex
  • astro-ph.IM

Fingerprint Dive into the research topics of 'The thermal neutron capture cross section of the radioactive isotope $^{60}$Fe'. Together they form a unique fingerprint.

Cite this