Abstract / Description of output
Transcription factors have long been recognised as powerful regulators of mammalian development yet it is largely unknown how individual key regulators operate within wider regulatory networks. Here we have used a combination of global gene expression and chromatin-immunoprecipitation approaches during the early stages of haematopoietic development to define the transcriptional programme controlled by Runx1, an essential regulator of blood cell specification. Integrated analysis of these complementary genome-wide datasets allowed us to construct a global regulatory network model, which suggested that key regulators are activated sequentially during blood specification, but will ultimately collaborate to control many haematopoietically expressed genes. Using the CD41/integrin alpha 2b gene as a model, cellular and in vivo studies showed that CD41 is controlled by both Scl/Tal1 and Runx1 in fully specified blood cells, and initiation of CD41 expression in E7.5 embryos is severely compromised in the absence of Runx1. Taken together, this study represents the first global analysis of the transcriptional programme controlled by any key haematopoietic regulator during the process of early blood cell specification. Moreover, the concept of interplay between sequentially deployed core regulators is likely to represent a design principle widely applicable to the transcriptional control of mammalian development. (C) 2012 Elsevier Inc. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 404-419 |
Number of pages | 16 |
Journal | Developmental Biology |
Volume | 366 |
Issue number | 2 |
DOIs | |
Publication status | Published - 15 Jun 2012 |
Keywords / Materials (for Non-textual outputs)
- Animals
- Blood Cells
- Cell Differentiation
- Cell Lineage
- Core Binding Factor Alpha 2 Subunit
- Gene Expression Regulation, Developmental
- Genome
- Hematopoietic System
- Mice
- Platelet Membrane Glycoprotein IIb
- Transcription, Genetic