Toward functionally graded cellular microstructures

Carmen Torres-Sanchez, J.R. Corney

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

The design of multifunctional materials offers great potential for numerous applications in areas ranging from biomaterial science to structural engineering. Functionally graded microstructures (e.g., polymeric foams) are those whose porosity (i.e., ratio of the void to the solid volume of a material) is engineered to meet specific requirements such as a superior mechanical, thermal, and acoustic behavior. The controlled distribution of pores within the matrix, as well as their size, wall thickness, and interconnectivity are directly linked to the porous materials properties. There are emerging design and analysis methods of cellular materials but their physical use is restricted by current manufacturing technologies. Although a huge variety of foams can be manufactured with homogeneous porosity, for heterogeneous foams there are no generic processes for controlling the distribution of porosity throughout the resulting matrix. This paper describes work to develop an innovative and flexible process for manufacturing engineered cellular structures. Ultrasound was applied during specific foaming stages of a polymeric (polyurethane) melt, and this affected both the cellular architecture and distribution of the pore size, resulting in a controlled distribution that can be designed for specific purposes, once the polymeric foam solidified. The experimental results demonstrate that porosity (i.e., volume fraction) varies in direct proportion to the acoustic pressure magnitude of the ultrasonic signal.
Original languageEnglish
Article number091011
Number of pages7
JournalJournal of Mechanical Design
Issue number9
Publication statusPublished - 19 Aug 2009

Keywords / Materials (for Non-textual outputs)

  • design for manufacture
  • functionally graded materials
  • manufacturing processes
  • porosity
  • porous materials
  • structural engineering


Dive into the research topics of 'Toward functionally graded cellular microstructures'. Together they form a unique fingerprint.

Cite this