Projects per year
Abstract
Electronic signals govern the function of both nervous systems and computers, albeit in different ways. As such, hybridizing both systems to create an iono-electric brain-computer interface is a realistic goal; and one that promises exciting advances in both heterotic computing and neuroprosthetics capable of circumventing devastating neuropathology. 'Neural networks' were, in the 1980s, viewed naively as a potential panacea for all computational problems that did not fit well with conventional computing. The field bifurcated during the 1990s into a highly successful and much more realistic machine learning community and an equally pragmatic, biologically oriented 'neuromorphic computing' community. Algorithms found in nature that use the non-synchronous, spiking nature of neuronal signals have been found to be (i) implementable efficiently in silicon and (ii) computationally useful. As a result, interest has grown in techniques that could create mixed 'siliconeural' computers. Here, we discuss potential approaches and focus on one particular platform using parylene-patterned silicon dioxide.
Original language | English |
---|---|
Journal | Philosophical Transactions A: Mathematical, Physical and Engineering Sciences |
Volume | 373 |
Issue number | 2046 |
DOIs | |
Publication status | Published - 15 Jul 2015 |
Fingerprint
Dive into the research topics of 'Towards a 'siliconeural computer': technological successes and challenges'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Implantable Microsystems for Personalised Anti-Cancer Therapy
Murray, A., Smith, S. & Walton, A.
27/05/13 → 31/05/19
Project: Research