Towards Composable GPU Programming: Programming GPUs with Eager Actions and Lazy Views

Michael Haidl, Michel Steuwer, Hendrik Dirks, Tim Hummernbrum, Sergei Gorlatch

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we advocate a composable approach to programming systems with Graphics Processing Units (GPU): programs are developed as compositions of generic, reusable patterns. Current GPU programming approaches either rely on low-level, monolithic code without patterns (CUDA and OpenCL), which achieves high performance at the cost of cumbersome and error-prone programming, or they improve the programmability by using pattern-based abstractions (e.g., Thrust) but pay a performance penalty due to inefficient implementations of pattern composition. We develop an API for GPUs based programming on C++ with STL-style patterns and its compiler-based implementation. Our API gives the application developers the native C++ means (views and actions) to specify precisely which pattern compositions should be automatically fused during code generation into a single efficient GPU kernel, thereby ensuring a high target performance. We implement our approach by extending the range-v3 library which is currently being developed for the forthcoming C++ standards. The composable programming in our approach is done exclusively in the standard C++14, with STL algorithms used as patterns which we re-implemented in parallel for GPU. Our compiler implementation is based on the LLVM and Clang frameworks, and we use advanced multi-stage programming techniques for aggressive runtime optimizations. We experimentally evaluate our approach using a set of benchmark applications and a real-world case study from the area of image processing. Our codes achieve performance competitive with CUDA monolithic implementations, and we outperform pattern-based codes written using Nvidia’s Thrust.
Original languageEnglish
Title of host publicationPMAM'17 Proceedings of the 8th International Workshop on Programming Models and Applications for Multicores and Manycores
PublisherACM
Pages58-67
Number of pages10
ISBN (Print)978-1-4503-4883-6
DOIs
Publication statusPublished - 4 Feb 2017
Event8th International Workshop on Programming Models and Applications for Multicores and Manycores - Austin, United States
Duration: 4 Feb 20178 Feb 2017
https://ppopp17.sigplan.org/track/pmam-2017-papers

Conference

Conference8th International Workshop on Programming Models and Applications for Multicores and Manycores
Abbreviated titlePMAM 2017
Country/TerritoryUnited States
CityAustin
Period4/02/178/02/17
Internet address

Fingerprint

Dive into the research topics of 'Towards Composable GPU Programming: Programming GPUs with Eager Actions and Lazy Views'. Together they form a unique fingerprint.

Cite this